Generalized Maximum Principles and Stochastic Completeness for Pseudo-Hermitian Manifolds

Yuxin Dong , Weike Yu

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 949 -976.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 949 -976. DOI: 10.1007/s11401-022-0372-z
Article

Generalized Maximum Principles and Stochastic Completeness for Pseudo-Hermitian Manifolds

Author information +
History +
PDF

Abstract

In this paper, the authors establish a generalized maximum principle for pseudo-Hermitian manifolds. As corollaries, Omori-Yau type maximum principles for pseudo-Hermitian manifolds are deduced. Moreover, they prove that the stochastic completeness for the heat semigroup generated by the sub-Laplacian is equivalent to the validity of a weak form of the generalized maximum principles. Finally, they give some applications of these generalized maximum principles.

Keywords

Pseudo-Hermitian manifold / Omori-Yau type maximum principles / Stochastic completeness

Cite this article

Download citation ▾
Yuxin Dong, Weike Yu. Generalized Maximum Principles and Stochastic Completeness for Pseudo-Hermitian Manifolds. Chinese Annals of Mathematics, Series B, 2022, 43(6): 949-976 DOI:10.1007/s11401-022-0372-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barletta E. On the pseudohermitian sectional curvature of a strictly pseudoconvex CR manifold. Diff. Geom. Appl., 2007, 25: 612-631

[2]

Baudoin F, Wang J. Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds. Potential Anal., 2014, 40: 163-193

[3]

Borbély A. A remark of the Omori-Yau maximum principle. Kuwait Journal of Science and Engineering, 2012, 39(2): 45-56

[4]

Boyer C P, Galicki K. Sasakian Geometry, 2008, Oxford: Oxford University Press

[5]

Calabi E. An extension of E. Hopf maximum principles. Duck Math. J., 1957, 25: 45-56

[6]

Chen Q, Xin Y. A generalized maximum principle and its applications in geometry. Amer. J. Math., 1992, 114: 355-366

[7]

Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math., 1975, 28: 333-354

[8]

Chong T, Dong Y, Ren Y, Zhang W. Pseudo-harmonic maps from complete noncompact pseudo-Hermitian manifolds to regular ball. J. Geom. Anal., 2020, 30(4): 3512-3541

[9]

Chow W L. Über systeme von linearen partiellen differentialgleichungen erster Ordnung. Math. Ann., 1939, 117: 98-105

[10]

Dodziuk J. Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J., 1983, 32(5): 703-716

[11]

Dong Y, Ren Y, Yu W. Schwarz type lemmas for pseudo-Hermitian manifolds. J. Geom. Anal., 2020, 31(3): 3161-3195

[12]

Dong Y, Ren Y, Yu W. Prescribed Webster scalar curvatures on compact pseudo-Hermitian manifolds. J. Geom. Anal., 2022, 32(5): 151

[13]

Dragomir S, Tomassini G. Differential Geometry and Analysis on CR Manifolds, 2006, Boston, Basel, Berlin: Birkhäuser

[14]

Folland G B, Stein E M. Estimates for the ${\overline \partial _b} - {\rm{complex}}$ and analysis on the Heisenberg group. Comm. Pure Appl. Math., 1974, 27: 429-522

[15]

Grigor’yan A. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc., 1999, 36: 135-249

[16]

Grigor’yan, A., Heat Kernel and Analysis on Manifolds, Studies in Adv. Math., Amer. Math. Soc., International Press, 2009.

[17]

Hömander L. Hypoelliptic second differential equations. Acta Math., 1967, 119(1): 147-171

[18]

Hong K, Sung C. An Omori-Yau maximum principle for semi-elliptic operators and Liouville-type theorem. Diff. Geom. Appl., 2013, 31: 533-539

[19]

Jost J, Xu C J. Subelliptic harmonic maps. Trans. Amer. Math. Soc., 1998, 350(11): 4633-4649

[20]

Nagel A, Stein E M, Wainger S. Balls and metrics defined by vector fields I: Basic properties. Acta Math., 1985, 155(1): 103-147

[21]

Ni W M. On the elliptic equation $\Delta u + K\left( x \right){u^{{{n + 2} \over {n - 2}}}} = 0$, its generalizations and applications to geometry. Indiana Univ. Math. J., 1982, 31: 493-539

[22]

Omori H. Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan, 1967, 19: 205-214

[23]

Pigola S, Rigoli M, Setti A G. A remark on the maximum principle and stochastic completeness. Proc. Amer. math. soc., 2003, 131(4): 1283-1288

[24]

Pigola, S., Rigoli, M. and Setti, A. G., Maximum principles on Riemannian manifolds and applications, Memoirs of Amer. Math. Soc., 174(822), 2005, x+99 pp

[25]

Rashevsky P K. Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math, 1938, 2: 83-94

[26]

Ratto A, Rigoli M, Setti A G. On the Omori-Yau maximal principle and its applications to differential equations and geometry. J. Func. Anal., 1995, 134: 486-510

[27]

Ratto A, Rigoli M, Veron L. Scalar curvature and conformal deformation of hyperbolic space. J. Func. Anal., 1994, 121: 15-77

[28]

Ren Y, Yang G, Chong T. Liouville theorem for pseudoharmonic maps from Sasakian manifolds. J. Geom. Phys., 2014, 81: 47-61

[29]

Rothschild L P, Stein E M. Hypoelliptic differential operators and nilpotent groups. Acta Math., 1976, 137: 247-320

[30]

Sattinger D H. Topics in Stability and Bifurcation Theory, 1973, Heidelberg: Springer-Verlag

[31]

Strichartz R S. Sub-Riemannian geometry. J. Diff. Geom., 1986, 24: 221-263

[32]

Sung C. Liouville-type theorems and applications to geometry on complete Riemannain manifolds. J. Geom. Anal., 2013, 23: 96-105

[33]

Takegoshi K. A volume estimate for strong subharmonicity and maximum principle on complete Riemannian manifolds. Nagoya Math. J., 1998, 151: 25-36

[34]

Tanaka N. A Differential Geometric Study on Strongly Pseudo-convex Manifolds, 1975, Tokyo: Kinokuniya Book-Store

[35]

Webster S M. Pseudohermitian structures on a real hypersurface. J. Diff. Geom., 1978, 13(1): 25-41

[36]

Yau S T. Harmonic function on complete Riemannian manifolds. Comm. Pure Appl. Math., 1975, 28: 201-228

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/