Long-time Asymptotic Behavior for the Derivative Schrödinger Equation with Finite Density Type Initial Data

Yiling Yang , Engui Fan

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 893 -948.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 893 -948. DOI: 10.1007/s11401-022-0371-0
Article

Long-time Asymptotic Behavior for the Derivative Schrödinger Equation with Finite Density Type Initial Data

Author information +
History +
PDF

Abstract

In this paper, the authors apply $\overline \partial $ steepest descent method to study the Cauchy problem for the derivative nonlinear Schrödinger equation with finite density type initial data $\matrix{{{\rm{i}}q + {q_{xx}} + {\rm{i}}{{\left( {{{\left| q \right|}^2}q} \right)}_x} = 0,} \hfill \cr {q\left( {x,0} \right) = {q_0}\left( x \right),} \hfill \cr } $ where $\mathop {\lim }\limits_{x \to \pm \infty } {q_0}\left( x \right) = {q_ \pm }\,{\rm{and}}\,\,\left| {{q_ \pm }} \right| = 1$. Based on the spectral analysis of the Lax pair, they express the solution of the derivative Schrödinger equation in terms of solutions of a Riemann-Hilbert problem. They compute the long time asymptotic expansion of the solution q(x, t) in different space-time regions. For the region $\xi = {x \over t}$ with ∣ξ + 2∣ < 1, the long time asymptotic is given by $q\left( {x,t} \right) = T{\left( \infty \right)^{ - 2}}q_\Lambda ^r\left( {x,t} \right) + {\cal O}\left( {{t^{ - {3 \over 4}}}} \right),$ in which the leading term is N(I) solitons, the second term is a residual error from a $\overline \partial $ equation. For the region ∣ξ + 2∣ > 1, the long time asymptotic is given by $q\left( {x,t} \right) = T{\left( \infty \right)^{ - 2}}q_\Lambda ^r\left( {x,t} \right) - {t^{ - {1 \over 2}}}{\rm{i}}{f_{11}} + {\cal O}\left( {{t^{ - {3 \over 4}}}} \right),$ in which the leading term is N(I) solitons, the second ${t^{ - {1 \over 2}}}$ order term is soliton-radiation interactions and the third term is a residual error from a $\overline \partial $ equation. These results are verification of the soliton resolution conjecture for the derivative Schrödinger equation. In their case of finite density type initial data, the phase function θ(z) is more complicated that in finite mass initial data. Moreover, two triangular decompositions of the jump matrix are used to open jump lines on the whole real axis and imaginary axis, respectively.

Keywords

Derivative Schrödinger equation / Riemann-Hilbert problem / $\overline \partial $ steepest descent method / Long-time asymptotics / Soliton resolution / Asymptotic stability

Cite this article

Download citation ▾
Yiling Yang, Engui Fan. Long-time Asymptotic Behavior for the Derivative Schrödinger Equation with Finite Density Type Initial Data. Chinese Annals of Mathematics, Series B, 2022, 43(6): 893-948 DOI:10.1007/s11401-022-0371-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Manakov S V. Nonlinear Fraunhofer diffraction. Sov. Phys.-JETP, 1974, 38: 693-696

[2]

Zakharov V E, Manakov S V. Asymptotic behavior of nonlinear wave systems integrated by the inverse scattering method. Soviet Physics JETP, 1976, 44: 106-112

[3]

Schuur P C. Asymptotic analysis of soliton products, 1986, Berlin Heidelberg: Springer-Verlag

[4]

Bikbaev R F. Asymptotic-behavior as t → ∞ of the solution to the cauchy-problem for the landau-lifshitz equation. Theor. Math. Phys, 1988, 77: 1117-1123

[5]

Bikbaev R F. Soliton generation for initial-boundary-value problems. Phys. Rev. Lett., 1992, 68: 3117-3120

[6]

Deift P, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert problems. Ann. Math., 1993, 137: 295-368

[7]

Deift, P. and Zhou, X., Long-time behavior of the non-focusing nonlinear Schrödinger equation—a case study, Lectures in Mathematical Sciences, Graduate School of Mathematical Sciences, University of Tokyo, 1994.

[8]

Deift P, Zhou X. Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Comm. Pure Appl. Math., 2003, 56: 1029-1077

[9]

Grunert K, Teschl G. Long-time asymptotics for the Korteweg-de Vries equation via nonlinear steepest descent. Math. Phys. Anal. Geom., 2009, 12: 287-324

[10]

Boutet de Monvel A, Kostenko A, Shepelsky D, Teschl G. Long-time asymptotics for the Camassa-Holm equation. SIAM J. Math. Anal, 2009, 41: 1559-1588

[11]

Xu J, Fan E G. Long-time asymptotics for the Fokas-Lenells equation with decaying initial value problem: Without solitons. J. Differential Equations, 2015, 259: 1098-1148

[12]

Xu J, Fan E G. Long-time asymptotic behavior for the complex short pulse equation. J. Differential Equations, 2020, 269: 10322-10349

[13]

McLaughlin, K. D. T.-R. and Miller, P. D., The $\overline \partial $ steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying non-analytic weights, Int. Math. Res. Not., 2006, 2006, Art. ID 48673.

[14]

McLaughlin, K. D. T.-R. and Miller, P. D., The $\overline \partial $ steepest descent method for orthogonal polynomials on the real line with varying weights, Int. Math. Res. Not., 2008, 2008, Art. ID 075.

[15]

Dieng M, McLaughlin K D T-R, Miller P D. Dispersive asymptotics for linear and integrable equations by the $\overline \partial $ steepest descent method. Nonlinear dispersive partial differential equations and inverse scattering, 2019, New York: Springer-Verlag 253-291

[16]

Borghese M, Jenkins R, McLaughlin K D T-R. Long-time asymptotic behavior of the focusing nonlinear Schrödinger equation. Ann. I. H. Poincaré Anal, 2018, 35: 887-920

[17]

Jenkins R, Liu J, Perry P, Sulem C. Soliton resolution for the derivative nonlinear Schrödinger equation. Commun. Math. Phys., 2018, 363: 1003-1049

[18]

Cuccagna S, Jenkins R. On asymptotic stability of N-solitons of the defocusing nonlinear Schrödinger equation. Comm. Math. Phys, 2016, 343: 921-969

[19]

Yang Y L, Fan E G. On the long-time asymptotics of the modified Camassa-Holm equation in space-time solitonic regions. Adv. Math., 2022, 402: 108340

[20]

Yang Y L, Fan E G. Soliton resolution for the short-pulse equation. J. Differential Equations, 2021, 280: 644-689

[21]

Cheng Q Y, Fan E G. Long-time asymptotics for the focusing Fokas-Lenells equation in the solitonic region of space-time. J. Differential Equations, 2022, 309: 883-948

[22]

Xun W K, Fan E G. Long time and Painlevé-type asymptotics for the Sasa-Satsuma equation in solitonic space time regions. J. Differential Equations, 2022, 329: 89-130

[23]

Wang Z Y, Fan E G. Defocusing NLS equation with nonzero background: Large-time asymptotics in a solitonless region. J. Differential Equations, 2022, 336: 334-373

[24]

Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys., 1978, 19: 798-801

[25]

Rogister A. Parallel propagation of nonlinear low-frequency waves in high-β plasma. Phys. Fluids., 1971, 14: 2733-2739

[26]

Mjolhus E. On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys., 1976, 16: 321-334

[27]

Mio K, Ogino T, Minami K, Takeda S. Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Japan., 1976, 41: 265-271

[28]

Mjolhus E. Nonlinear Alfvén waves and the DNLS equation: Oblique aspects. Phys. Scr., 1989, 40: 227-237

[29]

Mjolhus, E. and Hada, T., Nonlinear Waves and Chaos in Space Plasmas, T. Hada, H. Matsumoto (eds.), Terrapub, Tokio, 1997.

[30]

Agrawal G P. Nonlinear Fiber Optics, 1989, Boston: Academic Press

[31]

Anderson D, Lisak M. Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A., 1983, 27: 1393-1398

[32]

Tzoar N, Jain M. Self-phase modulation in long-geometry optical waveguide. Phys. Rev. A., 1981, 23: 1266-1270

[33]

Nakata I. Weak nonlinear electromagnetic waves in a ferromagnet propagating parallel to an external magnetic field. J. Phys. Soc. Japan., 1991, 60: 3976-3977

[34]

Nakata I, One H, Yosida M. Solitons in a dielectric medium under an external magnetic field. Prog. Theor. Phys., 1993, 90: 739-742

[35]

Daniel M, Veerakumar V. Propagation of electromagnetic soliton in antiferromagnetic medium. Phys. Lett. A, 2002, 302: 77-86

[36]

Zhou G Q, Huang N N. An N-soliton solution to the DNLS equation based on revised inverse scattering transform. J. Phys. A: Math. Theor., 2007, 40: 13607

[37]

Kawata T, Inoue H. Exact solutions of the derivative nonlinear Schrödinger equation under the nonvanishing conditions. J. Phys. Soc. Japan., 1978, 44: 1968-1976

[38]

Chen X J, Lam W K. Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys. Rev. E, 2004, 69: 066604

[39]

Chen X J, Yang J, Lam W K. N-soliton solution for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. J. Phys. A, 2006, 39: 3263

[40]

Lashkin V. N-soliton solution and perturbation theory for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. J. Phys. A, 2007, 40: 6119

[41]

Zhang G Q, Yan Z Y. The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and N-double-pole solutions. J. Nonl. Sci., 2020, 30: 3089-3127

[42]

Tsutsumi M, Fukuda I. On solutions of the derivative nonlinear Schrödinger equation, Existence and uniqueness theorem. Funkcialaj Ekvacioj, 1980, 23: 259-277

[43]

Tsutsumi M, Fukuda I. On solutions of the derivative nonlinear Schrödinger equation II. Funkcialaj Ekvacioj, 1981, 24: 85-94

[44]

Hayashi N. The initial value problem for the derivative nonlinear Schrödinger equation in the energy space. Nonl. Anal.: Theo., Meth. Appl., 1993, 20: 823-833

[45]

Xu, J. and Fan, E. G., Inverse scattering for the derivative nonlinear Schrödinger equation: A Riemann-Hilbert approach, 2012, arXiv:1209.4245v1.

[46]

Xu J, Fan E G, Chen Y. Long-time asymptotic for the derivative nonlinear Schrödinger equation with step-like initial value. Math. Phys. Anal. Geometry, 2013, 16: 253-288

[47]

Pelinovsky D E, Shimabukuro Y. Existence of global solutions to the derivative NLS equation with the inverse scattering transform method. Inter Math Res Notices, 2018, 2018: 5663-5728

[48]

Liu J, Perry P, Sulem C. Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data. Ann. I. H. Poincaré Anal, 2018, 35: 217-265

[49]

Beals R, Coifman R R. Scattering and inverse scattering for first order systems. Commun. Pur. Appl. Math., 1984, 37: 39-90

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/