Stability of Multiplier Ideal Sheaves

Qi’an Guan , Zhenqian Li , Xiangyu Zhou

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 819 -832.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 819 -832. DOI: 10.1007/s11401-022-0360-3
Article

Stability of Multiplier Ideal Sheaves

Author information +
History +
PDF

Abstract

In the present article, the authors find and establish stability of multiplier ideal sheaves, which is more general than strong openness.

Keywords

Plurisubharmonic function / Multiplier ideal sheaf / Strong openness and stability / Coherent analytic sheaf / L 2 estimate

Cite this article

Download citation ▾
Qi’an Guan, Zhenqian Li, Xiangyu Zhou. Stability of Multiplier Ideal Sheaves. Chinese Annals of Mathematics, Series B, 2022, 43(5): 819-832 DOI:10.1007/s11401-022-0360-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berndtsson B. The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman. Ann. L’Inst. Fourier (Grenoble), 1996, 46: 1083-1094

[2]

Berndtsson B. The openness conjecture and complex Brunn-Minkowski inequalities, 2015, Cham: Springer-Verlag 29-44

[3]

Demailly, J.-P., Complex analytic and differential geometry, https://www-fourier.ujf-grenoble.fr/demailly/books.html.

[4]

Demailly J-P. Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), 2001, Trieste: Abdus Salam Int. Cent. Theoret. Phys. 1-148

[5]

Demailly J-P. Analytic Methods in Algebraic Geometry, 2010, Beijing: Higher Education Press

[6]

Demailly J-P, Kollár J. Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup., 2001, 34(4): 525-556

[7]

Grauert H, Remmert R. Coherent Analytic Sheaves, Grundlehren der mathematischen Wissenchaften, 265, 1984, Berlin: Springer-Verlag

[8]

Guan, Q. A., Li, Z. Q. and Zhou, X. Y., Estimation of weighted L 2 norm related to Demailly’s Strong Openness Conjecture, 2016, arXiv:1603.05733.

[9]

Guan Q A, Zhou X Y. Optimal constant problem in the L 2 extension theorem. C. R. Acad. Sci. Paris. Ser. I., 2012, 350: 753-756

[10]

Guan, Q. A. and Zhou, X. Y., Strong openness conjecture and related problems for plurisubharmonic functions, 2014, arXiv: 1401.7158.

[11]

Guan Q A, Zhou X Y. Optimal constant in an L 2 extension problem and a proof of a conjecture of Ohsawa. Sci. China Math., 2015, 58: 35-59

[12]

Guan Q A, Zhou X Y. A solution of an L 2 extension problem with optimal estimate and applications. Ann. of Math. (2), 2015, 181: 1139-1208

[13]

Guan Q A, Zhou X Y. A proof of Demailly’s strong openness conjecture. Ann. of Math., 2015, 182(2): 605-616 arXiv: 1311.3781

[14]

Guan Q A, Zhou X Y. Effectiveness of Demailly’s strong openness conjecture and related problems. Invent. Math., 2015, 202: 635-676

[15]

Hewitt E, Stromberg K. Real and Abstract Analysis, 1975, Berlin: Springer-Verlag

[16]

Hörmander L. Notions of Convexity, 2007 Reprint of the 1994 edition Boston, MA: Birkhäuser Boston, Inc.

[17]

Nadel A. Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature. Ann. of Math. (2), 1990, 132(3): 549-596

[18]

Pham H H. The weighted log canonical threshold. C. R. Math. Acad. Sci. Paris, 2014, 352(4): 283-288

[19]

Phong D H, Sturm J. Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions. Ann. of Math. (2), 2000, 152: 277-329

[20]

Siu Y-T. The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Geometric Complex Analysis, 1996, Hayama: World Scientific 577-592

[21]

Siu Y-T. Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000), 2002, Berlin: Springer-Verlag 223-277

[22]

Siu Y-T. Invariance of plurigenera and torsion-freeness of direct image sheaves of pluricanonical bundles, Finite or infinite dimensional complex analysis and applications, 2004, Dordrecht: Kluwer Acad. Publ. 45-83

[23]

Siu Y-T. Multiplier ideal sheaves in complex and algebraic geometry. Sci. China Ser. A, 2005, 48: 1-31 suppl.)

[24]

Siu Y T. Dynamic multiplier ideal sheaves and the construction of rational curves in Fano manifolds, Complex analysis and digital geometry, 2009, Uppsala: Uppsala Universitet 323-360

[25]

Straube E. Lectures on the L 2-Sobolev Theory of the $\overline \partial $-Neumann Problem, 2010, European Mathematical Society: Zürich

[26]

Zhu L F, Guan Q A, Zhou X Y. On the Ohsawa-Takegoshi L 2 extension theorem and the Bochner-Kodaira identity with non-smooth twist factor. J. Math. Pures Appl., 2012, 97: 579-601

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/