On the Radius of Analyticity of Solutions to 3D Navier-Stokes System with Initial Data in L p

Ruilin Hu , Ping Zhang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 749 -772.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 749 -772. DOI: 10.1007/s11401-022-0356-z
Article

On the Radius of Analyticity of Solutions to 3D Navier-Stokes System with Initial Data in L p

Author information +
History +
PDF

Abstract

Given initial data u 0L p (ℝ3) for some p in $\left[ {3,{{18} \over 5}} \right[$, the auhtors first prove that 3D incompressible Navier-Stokes system has a unique solution u = u L+v with ${u_L}\mathop = \limits^{{\rm{def}}} \,{{\rm{e}}^{t\Delta }}{u_0}$ and $v \in {{\tilde L}^\infty }\left( {\left[ {0,T} \right];{{\dot H}^{{5 \over 2} - {6 \over p}}}} \right) \cap {{\tilde L}^1}\left( {\left] {0,T} \right[;{{\dot H}^{{9 \over 2} - {6 \over p}}}} \right)$ for some positive time T. Then they derive an explicit lower bound for the radius of space analyticity of v, which in particular extends the corresponding results in [Chemin, J.-Y., Gallagher, I. and Zhang, P., On the radius of analyticity of solutions to semi-linear parabolic system, Math. Res. Lett., 27, 2020, 1631–1643, Herbst, I. and Skibsted, E., Analyticity estimates for the Navier-Stokes equations, Adv. in Math., 228, 2011, 1990–2033] with initial data in s(ℝ3) for $s \in \left[ {{1 \over 2},{3 \over 2}} \right[$.

Keywords

Incompressible Navier-Stokes equations / Radius of analyticity / Littlewood-Paley theory

Cite this article

Download citation ▾
Ruilin Hu, Ping Zhang. On the Radius of Analyticity of Solutions to 3D Navier-Stokes System with Initial Data in L p. Chinese Annals of Mathematics, Series B, 2022, 43(5): 749-772 DOI:10.1007/s11401-022-0356-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bahouri H, Chemin J-Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations, 2011, Berlin, Heidelberg: Springer-Verlag

[2]

Bony J M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup., 1981, 14: 209-246

[3]

Chemin J-Y. Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray, Actes des Journées Mathématiques à la Mémoire de Jean Leray, 2004, Paris: Société Mathématique de France 99-123

[4]

Chemin J-Y, Gallagher I. Wellposedness and stability results for the Navier-Stokes equations in ℝ3. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, 26: 599-624

[5]

Chemin J-Y, Gallagher I, Zhang P. On the radius of analyticity of solutions to semi-linear parabolic system. Math. Res. Lett., 2020, 27: 1631-1643

[6]

Foias C, Temam R. Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 1989, 87: 359-369

[7]

Giga Y. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differential Equations, 1986, 62: 186-212

[8]

Grafakos L. Classical Fourier Analysis, 2014 3rd ed. New York: Springer-Verlag

[9]

Grujič Z, Kukavica I. Space analyticity for the Navier-Stokes and related equations with initial data in L p. J. Funct. Anal., 1998, 152: 447-466

[10]

Herbst I, Skibsted E. Analyticity estimates for the Navier-Stokes equations. Adv. in Math., 2011, 228: 1990-2033

[11]

Kato T. Strong L p-solutions of the Navier-Stokes equation in ℝm with applications to weak solutions. Math. Z., 1984, 187: 471-480

[12]

Kato T, Masuda K. Nonlinear evolution equations and analyticity, I. Annales de l’IHP section C, 1986, 3: 455-467

[13]

Lemarié-Rieusset P-G. Nouvelles remarques sur l’analyticité des solutions milds des équations de Navier-Stokes dans ℝ3. C. R. Math. Acad. Sci. Paris, 2004, 338: 443-446

[14]

Weissler F B. The Navier-Stokes initial value problem in L p. Arch. Rational Mech. Anal., 1980, 74: 219-230

[15]

Zhang P. Remark on the regularities of Kato’s solutions to Navier-Stokes equations with initial data in L d(ℝd). Chin. Ann. Math. Ser. B, 2008, 29: 265-272

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/