A Criterion of Nonparabolicity by the Ricci Curvature

Qing Ding , Xiayu Dong

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 739 -748.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 739 -748. DOI: 10.1007/s11401-022-0355-0
Article

A Criterion of Nonparabolicity by the Ricci Curvature

Author information +
History +
PDF

Abstract

A complete manifold is said to be nonparabolic if it does admit a positive Green’s function. To find a sharp geometric criterion for the parabolicity/nonparbolicity is an attractive question inside the function theory on Riemannian manifolds. This paper devotes to proving a criterion for nonparabolicity of a complete manifold weakened by the Ricci curvature. For this purpose, we shall apply the new Laplacian comparison theorem established by the first author to show the existence of a non-constant bounded subharmonic function.

Keywords

Nonparabolicity / Subharmonic function / Ricci curvature

Cite this article

Download citation ▾
Qing Ding, Xiayu Dong. A Criterion of Nonparabolicity by the Ricci Curvature. Chinese Annals of Mathematics, Series B, 2022, 43(5): 739-748 DOI:10.1007/s11401-022-0355-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlfors L V. Sur le type dúne surface de Riemann. C. R. Math. Acad. Sci. Paris, 1935, 201: 30-32

[2]

Anderson M T. The Dirichlet problem at infinity for manifolds of negative curvature. J. Diff. Geom., 1983, 18: 701-721

[3]

Chen Q. Stability and constant boundary-value problem of harmonic maps with potential. J. Austral. Math. Soc. Ser. A, 2000, 68: 145-152

[4]

Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math., 1975, 25: 333-354

[5]

Ding Q. A new Laplacian comparison theorem and the estimate of eigenvalues. Chin. Ann. Math. Ser. B, 1994, 15: 35-42

[6]

Ding Q. Bounded harmonic functions on Riemannian manifolds of nonpositive curvature. Math. Ann., 2012, 353: 803-826

[7]

Ding Q. Bounded harmonic functions on complete manifolds of nonpositive curvature. Proc. of the 6th International Congress of Chinese Mathematicians, 2016, 2: 69-78

[8]

Esteve A, Palmer V. On characterization of parabolicity and hyperbolicity of submanifolds. J. London Math. Soc. (2), 2011, 84: 120-136

[9]

Greene, R. E. and Wu, H., Function theory on manifolds which possess a pole, Lect. Notes in Math., Vol. 699, 1979.

[10]

Grigorýan A. Analytic and geometric backgroup of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc., 1999, 36: 135-249

[11]

Hebisch W, Zegarlinski B. Coercive inequalities on metric measure spaces. J. Funct. Anal., 2010, 258: 814-851

[12]

Ichihara K. Curvature, geodesics and the Brownian motion on a Riemannian manifold I; Recurrence properties. Nagoya Math. J., 1982, 87: 101-114

[13]

Li P. Cruvature and function theory on Riemannian manifolds, Survey in Diff. Geom. VII, 2000, Boston MA: Intern. Press 375-432

[14]

Li, P., Harmonic functions on complete Riemannian manifolds, Handbook of geometric analysis (Vol.I), L. Z. Ji, P Li, R. Schoen and L. (eds.), Simon Advance Lectures in Mathematics, Intern. Press, 2008, 195–225.

[15]

Li P, Tam L. Symmetric Green’s functions on complete manifolds. Amer. J. Math., 1987, 109: 1129-1154

[16]

Li P, Tam L. Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set. Ann. Math. (2), 1987, 125(1): 171-207

[17]

Li P, Tam L. Harmonic functions and the structure of complete manifolds. J. Diff. Geom., 1992, 35: 359-383

[18]

Li P, Tam L. Green’s functions, harmonic functions and volume comparison. J. Diff. Geom., 1995, 41: 277-318

[19]

Lyons T, Sullivan D. Function theory, randon paths and covering spaces. J. Diff. Geom., 1984, 19: 299-323

[20]

Malgrange B. Existence et approximation des solutions der equations aux dérvées partielles et des équations de convolution. Annales de l’Inst. Fourier, 1955, 6: 271-355

[21]

Markvorsen S, Palmer V. Transience and capacity of minimal submanifolds. Geometric and Functional Analysis, 2003, 13: 915-933

[22]

Markvorsen S, Palmer V. How to obtain transience from bounded radial mean curvature. Trans. Amer. Math, Soc., 2005, 357: 3459-3479

[23]

Milnor J. On deciding whether a surface is parabolic or hyperbolic. Amer. Math. Monthly, 1977, 84: 43-46

[24]

Sullivan D. The Dirichlet problem at infinity for a negative curved manifold. PJ. Diff. Geom., 1983, 18: 723-732

[25]

Sung C J. A note on the existence of positive Green’s function. J. Funct. Anal., 1998, 156: 199-207

[26]

Varopoulos N. The Poisson kernel on positively curved manifolds. J. Funct. Anal., 1981, 44: 359-380

[27]

Wang F Y. Functional Inequalities, Markov Semigroup and Spectral Theory, 2005, Beijing/New York: Science Press

[28]

Wang G F, Xu D L. Harmonic maps from smooth metric measure spaces. Internat. J. Math., 2012, 23(9): 1250095 21 pp

[29]

Xin Y L. Harmonic maps of bounded symmetric domains. Math. Ann., 1995, 303: 417-433

[30]

Yau S T. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math., 1975, 28: 201-228

[31]

Yau S T. Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J., 1976, 25: 659-670

[32]

Yau S T. Nonlinear analytsis in geometry. L’Enseignment Mathématique, 1987, 33: 109-158

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/