Boundary Hölder Estimates for a Class of Degenerate Elliptic Equations in Piecewise Smooth Domains

Jiaxing Hong , Genggeng Huang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 719 -738.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 719 -738. DOI: 10.1007/s11401-022-0354-1
Article

Boundary Hölder Estimates for a Class of Degenerate Elliptic Equations in Piecewise Smooth Domains

Author information +
History +
PDF

Abstract

In this paper, the authors will apply De Giorgi-Nash-Moser iteration to establish boundary Hölder estimates for a class of degenerate elliptic equations in piecewise C 2-smooth domains.

Keywords

Degenerate elliptic / De Giorgi-Nash-Moser iteration / Boundary Hölder regularity

Cite this article

Download citation ▾
Jiaxing Hong, Genggeng Huang. Boundary Hölder Estimates for a Class of Degenerate Elliptic Equations in Piecewise Smooth Domains. Chinese Annals of Mathematics, Series B, 2022, 43(5): 719-738 DOI:10.1007/s11401-022-0354-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Daskalopoulos P, Lee K-A. Hölder regularity of solutions of degenerate elliptic and parabolic equations. Journal of Functional Analysis, 2003, 201(2): 341-379

[2]

De Giorgi E. Sulla differenziabilità e lanalicità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino cl. Sci. Fis. Fat. Nat., 1957, 3: 25-43

[3]

Fichera G. Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei Mem. Ci. Fis. Mat. Natur. Sez. I, 1956, 5(8): 1-30

[4]

Fichera G. On a unified theory of boundary value problems for elliptic-parabolic equations of second order. Matematika, 1963, 7(6): 99-122

[5]

Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order, 2015, Berlin: Springer-Verlag

[6]

Han Q, Hong J, Huang G. Compactness of Alexandrov-Nirenberg Surfaces. Communications on Pure and Applied Mathematics, 2017, 70(9): 1706-1753

[7]

Huang G. A priori bounds for a class of semi-linear degenerate elliptic equations. Science China Mathematics, 2012, 57(9): 1911-1926

[8]

Keldyš M V. On certain cases of degeneration of equations of elliptic type on the boundary of a domain. Dokl. Akad. Nauk SSSR, 1951, 77: 181-183

[9]

Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Transactions of the American Mathematical Society, 1938, 43(1): 126-166

[10]

Nash J. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 1958, 80: 931-954

[11]

Oleǐnik O A. A problem of Fichera. Dokl. Akad. Nauk SSSR, 1964, 157: 1297-1300

[12]

Oleǐnik O A. Linear equations of second order with nonnegative characteristic form. Mat. Sb., 1966, 69(111): 111-140

[13]

Oleǐnik O A, Radkevič E V. Second Order Equations with Nonnegative Characteristic Form, 1973, New York: Amer. Math. Soc., RI/Plenum Press

[14]

Weber B. Regularity and a Liouville theorem for a class of boundary-degenerate second order equations. Journal of Differential Equations, 2021, 281: 459-502

[15]

Zhang F, Du K. Krylov-Safonov estimates for a degenerate diffusion process. Stochastic Processes and their Applications, 2020, 130(8): 5100-5123

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/