Positive Solutions for Asymptotically Linear Cone-Degenerate Elliptic Equations

Hua Chen , Peng Luo , Shuying Tian

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 685 -718.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 685 -718. DOI: 10.1007/s11401-022-0353-2
Article

Positive Solutions for Asymptotically Linear Cone-Degenerate Elliptic Equations

Author information +
History +
PDF

Abstract

In this paper, the authors study the asymptotically linear elliptic equation on manifold with conical singularities $ - {\Delta _{\mathbb{B}}}u + \lambda u = a\left( z \right)f\left( u \right),\,\,\,\,\,\,u \ge 0\,\,{\rm{in}}\,\,_ + ^N,$

where N = n + 1 ≥ 3, λ > 0, z = (t, x 1, ⋯, x n), and ${\Delta _{\mathbb{B}}} = {\left( {t{\partial _t}} \right)^2} + \partial _{{x_1}}^2 + \cdots + \partial _{{x_n}}^2$. Combining properties of cone-degenerate operator, the Pohozaev manifold and qualitative properties of the ground state solution for the limit equation, we obtain a positive solution under some suitable conditions on a and f.

Keywords

Asymptotically linear / Pohozaev identity / Cone degenerate elliptic operators

Cite this article

Download citation ▾
Hua Chen, Peng Luo, Shuying Tian. Positive Solutions for Asymptotically Linear Cone-Degenerate Elliptic Equations. Chinese Annals of Mathematics, Series B, 2022, 43(5): 685-718 DOI:10.1007/s11401-022-0353-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal., 1983, 7: 981-1012

[2]

Berestycki H, Lions P L. Nonlinear scalar field equations, I, Existence of a ground state. Arch. Ration. Meth. Anal., 1983, 82(4): 313-345

[3]

Brezis H, Lieb E H. A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc., 1983, 88(3): 486-490

[4]

Cerami G. An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend. A, 1978, 112(2): 332-336

[5]

Chen H, Liu G W. Global existence and nonexistence for semilinear parabolic equations with conical degeneration. J. Pseudo-Differ. Oper. Appl., 2012, 3(3): 329-349

[6]

Chen H, Liu X C, Wei Y W. Existence theorem for a class of semilinear totally characteristic elliptic equations with conical cone Sobolev exponents. Ann. Global Anal. Geom., 2011, 39(1): 27-43

[7]

Chen H, Liu X C, Wei Y W. Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with conical singularities. Calc. Var. Partial Differential Equations, 2012, 43: 463-484

[8]

Chen H, Liu X C, Wei Y W. Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents. J. Differential Equations, 2012, 252(7): 4200-4228

[9]

Chen H, Wei Y W, Zhou B. Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds. Math. Nachr., 2012, 285: 1370-1384

[10]

Costa D G, Magalhães C A. Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal., 1994, 23(11): 1401-1412

[11]

Costa D G, Tehrani H. On a class of asymptotically linear ellliptic problems in ℝn. J. Differential Equations, 2001, 173(2): 470-494

[12]

Ding W Y, Ni W M. On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Ration. Mech. Anal., 1986, 91(4): 283-308

[13]

Ekeland I. Convexity Methods in Hamiltonian Mechanics, 1990, Berlin, New York: Springer-Verlag

[14]

Ghoussoub N, Preiss D. A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré, 1989, 6(5): 321-330

[15]

Lehrer R, Maia L A. Positive solutions to aymptotically linear equations via Pohozaev manifold. J. Funct. Anal., 2014, 266(3): 213-246

[16]

Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case. Ann. Inst. H. Poincaré, 1984, 1: 109-145 223–283

[17]

Liu X C, Mei Y. Existence of nodal solution for semi-ilnaer elliptic equations with critical cone Sobolev exponents on singular manifolds. Acta Math. Sci. Ser. B Engl. Ed., 2013, 33(2): 543-555

[18]

Peletier L A, Serrin J. Uniqueness of positive solutions of semilinear equations in ℝn. Arch. Ration. Meth. Anal., 1983, 81: 181-197

[19]

Pohozaev S. Eigenfunctions of the equation ∆u + λf(u) = 0. Soviet Math. Dokl., 1995, 6: 1408-1411

[20]

Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phy., 1992, 43(2): 270-291

[21]

Schrohe E, Seiler J. Ellipticity and invertibility in the cone algebra on L p-Sobolev spaces. Integr. Equ. Oper. Theory, 2001, 41: 93-114

[22]

Schulze B W. Boundary Value Problems and Singular Pseudo-Differential Operators, 1998, Chichester: J. Wiley

[23]

Struwe M. Variational Method: Applications to Nonlinear PDE and Hamiltonian Systems, 2008, Berlin: Springer-Verlag

[24]

Stuart C A. Guidance properties of nonlinaer planar waveguides. Arch. Ration. Meth. Anal., 1993, 125: 145-200

[25]

Stuart C A, Zhou H S. Applying the mountain pass theorem to an asymptotically linear elliptic equations on ℝn. Comm. Partial Differential Equations, 1999, 9–10: 1731-1358

AI Summary AI Mindmap
PDF

276

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/