PDF
Abstract
In this paper, the authors study the asymptotically linear elliptic equation on manifold with conical singularities $ - {\Delta _{\mathbb{B}}}u + \lambda u = a\left( z \right)f\left( u \right),\,\,\,\,\,\,u \ge 0\,\,{\rm{in}}\,\,_ + ^N,$
where N = n + 1 ≥ 3, λ > 0, z = (t, x 1, ⋯, x n), and ${\Delta _{\mathbb{B}}} = {\left( {t{\partial _t}} \right)^2} + \partial _{{x_1}}^2 + \cdots + \partial _{{x_n}}^2$. Combining properties of cone-degenerate operator, the Pohozaev manifold and qualitative properties of the ground state solution for the limit equation, we obtain a positive solution under some suitable conditions on a and f.
Keywords
Asymptotically linear
/
Pohozaev identity
/
Cone degenerate elliptic operators
Cite this article
Download citation ▾
Hua Chen, Peng Luo, Shuying Tian.
Positive Solutions for Asymptotically Linear Cone-Degenerate Elliptic Equations.
Chinese Annals of Mathematics, Series B, 2022, 43(5): 685-718 DOI:10.1007/s11401-022-0353-2
| [1] |
Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal., 1983, 7: 981-1012
|
| [2] |
Berestycki H, Lions P L. Nonlinear scalar field equations, I, Existence of a ground state. Arch. Ration. Meth. Anal., 1983, 82(4): 313-345
|
| [3] |
Brezis H, Lieb E H. A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc., 1983, 88(3): 486-490
|
| [4] |
Cerami G. An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend. A, 1978, 112(2): 332-336
|
| [5] |
Chen H, Liu G W. Global existence and nonexistence for semilinear parabolic equations with conical degeneration. J. Pseudo-Differ. Oper. Appl., 2012, 3(3): 329-349
|
| [6] |
Chen H, Liu X C, Wei Y W. Existence theorem for a class of semilinear totally characteristic elliptic equations with conical cone Sobolev exponents. Ann. Global Anal. Geom., 2011, 39(1): 27-43
|
| [7] |
Chen H, Liu X C, Wei Y W. Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with conical singularities. Calc. Var. Partial Differential Equations, 2012, 43: 463-484
|
| [8] |
Chen H, Liu X C, Wei Y W. Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents. J. Differential Equations, 2012, 252(7): 4200-4228
|
| [9] |
Chen H, Wei Y W, Zhou B. Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds. Math. Nachr., 2012, 285: 1370-1384
|
| [10] |
Costa D G, Magalhães C A. Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal., 1994, 23(11): 1401-1412
|
| [11] |
Costa D G, Tehrani H. On a class of asymptotically linear ellliptic problems in ℝn. J. Differential Equations, 2001, 173(2): 470-494
|
| [12] |
Ding W Y, Ni W M. On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Ration. Mech. Anal., 1986, 91(4): 283-308
|
| [13] |
Ekeland I. Convexity Methods in Hamiltonian Mechanics, 1990, Berlin, New York: Springer-Verlag
|
| [14] |
Ghoussoub N, Preiss D. A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré, 1989, 6(5): 321-330
|
| [15] |
Lehrer R, Maia L A. Positive solutions to aymptotically linear equations via Pohozaev manifold. J. Funct. Anal., 2014, 266(3): 213-246
|
| [16] |
Lions P L. The concentration-compactness principle in the calculus of variations, The locally compact case. Ann. Inst. H. Poincaré, 1984, 1: 109-145 223–283
|
| [17] |
Liu X C, Mei Y. Existence of nodal solution for semi-ilnaer elliptic equations with critical cone Sobolev exponents on singular manifolds. Acta Math. Sci. Ser. B Engl. Ed., 2013, 33(2): 543-555
|
| [18] |
Peletier L A, Serrin J. Uniqueness of positive solutions of semilinear equations in ℝn. Arch. Ration. Meth. Anal., 1983, 81: 181-197
|
| [19] |
Pohozaev S. Eigenfunctions of the equation ∆u + λf(u) = 0. Soviet Math. Dokl., 1995, 6: 1408-1411
|
| [20] |
Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phy., 1992, 43(2): 270-291
|
| [21] |
Schrohe E, Seiler J. Ellipticity and invertibility in the cone algebra on L p-Sobolev spaces. Integr. Equ. Oper. Theory, 2001, 41: 93-114
|
| [22] |
Schulze B W. Boundary Value Problems and Singular Pseudo-Differential Operators, 1998, Chichester: J. Wiley
|
| [23] |
Struwe M. Variational Method: Applications to Nonlinear PDE and Hamiltonian Systems, 2008, Berlin: Springer-Verlag
|
| [24] |
Stuart C A. Guidance properties of nonlinaer planar waveguides. Arch. Ration. Meth. Anal., 1993, 125: 145-200
|
| [25] |
Stuart C A, Zhou H S. Applying the mountain pass theorem to an asymptotically linear elliptic equations on ℝn. Comm. Partial Differential Equations, 1999, 9–10: 1731-1358
|