Uniqueness of Solution to Systems of Elliptic Operators and Application to Asymptotic Synchronization of Linear Dissipative Systems II: Case of Multiple Feedback Dampings

Tatsien Li , Bopeng Rao

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 659 -684.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (5) : 659 -684. DOI: 10.1007/s11401-022-0352-3
Article

Uniqueness of Solution to Systems of Elliptic Operators and Application to Asymptotic Synchronization of Linear Dissipative Systems II: Case of Multiple Feedback Dampings

Author information +
History +
PDF

Abstract

In this paper, the authors consider the asymptotic synchronization of a linear dissipative system with multiple feedback dampings. They first show that under the observability of a scalar equation, Kalman’s rank condition is sufficient for the uniqueness of solution to a complex system of elliptic equations with mixed observations. The authors then establish a general theory on the asymptotic stability and the asymptotic synchronization for the corresponding evolutional system subjected to mixed dampings of various natures. Some classic models are presented to illustrate the field of applications of the abstract theory.

Keywords

Kalman rank condition / Uniqueness / Asymptotic synchronization / Kelvin-Voigt damping

Cite this article

Download citation ▾
Tatsien Li, Bopeng Rao. Uniqueness of Solution to Systems of Elliptic Operators and Application to Asymptotic Synchronization of Linear Dissipative Systems II: Case of Multiple Feedback Dampings. Chinese Annals of Mathematics, Series B, 2022, 43(5): 659-684 DOI:10.1007/s11401-022-0352-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguilar L, Orlov Y, Pisano A. Leader-follower synchronization and ISS analysis for a network of boundary-controlled wave PDEs. IEEE Control Systems Letters, 2021, 5: 683-688

[2]

Ammar-Khodja F, Benabdallah A, Munoz Rivera J E, Racke R. Energy decay for Timoshenko systems of memory type. J. Diff. Eqs., 2003, 194: 82-115

[3]

Arendt W, Batty C J. Tauberian theorems and stability of one-parameter semi-groups. Trans. Amer. Math. Soc., 1988, 306: 83-852

[4]

Benchimol C D. A note on weak stabilization of contraction semi-groups. SIAM J. Control Optim., 1978, 16: 373-379

[5]

Cavalcanti M M, Domingos Cavalcanti V N, Fukuoka R, Soriano J A. Uniform stabilization of the wave equation on compact manifolds and locally distributed damping—a sharp result. J. Math. Anal. Appl., 2008, 351: 661-674

[6]

Demetriou M, Fahroo F. Optimisation and adaptation of synchronisation controllers for networked second-order infinite-dimensional systems. Int. J. Control, 2019, 92: 112-131

[7]

Garofalo N, Lin F. Uniqueness of solution for elliptic operators. A geometric-variational approach. Comm. Pure Appl. Math., 1987, 40: 347-366

[8]

Han, Z. and Liu, Z., Regularity and stability of coupled plate equations with indirect structural or Kelvin-Voigt damping, ESAIM Control Optim. Calc. Var., 25(51), 2019, 14 pp.

[9]

Hao J, Rao B. Influence of the hidden regularity on the stability of partially damped systems of wave equations. J. Math. Pures Appl., 2020, 143: 257-286

[10]

Haraux A. Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal Math., 1989, 46: 245-258

[11]

Huygens C. Œuvres Complètes, Vol. 15, 1967, Amsterdam: Swets & Zeitlinger

[12]

Kim J U, Renardy Y. Boundary control of the Timoshenko beam. SIAM J. Control Optim., 1987, 25: 1417-1429

[13]

Komornik V, Rao B. Boundary stabilization of compactly wave equations. Asymp. Anal., 1993, 14: 339-359

[14]

Lagnese J E. Boundary Stabilization of Thin Plates, 1989, Study in Applied Mathematics, Philadelphia: SIAM

[15]

Lagnese J E, Lions J-L. Modelling, Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées, 1988, Paris: Masson

[16]

Lasiecka I, Tataru D. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Diff. Int. Equs., 1993, 6: 507-533

[17]

Lebeau G. Equation des ondes amorties. Math. Phys. Stud., 1996, 19: 73-109

[18]

Li T-T, Lu X, Rao B. Exact boundary synchronization for a coupled system of wave equations with Neumann boundary controls. Chin. Ann. Math. Ser. B, 2018, 39: 233-252

[19]

Li T-T, Lu X, Rao B. Approximate boundary null controllability and approximate boundary synchronization for a coupled system of wave equations with Neumann boundary controls, 2018, Cham: Springer-Verlag 837-868

[20]

Li, T.-T., Lu, X. and Rao, B., Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with coupled Robin boundary controls, ESAIM Control Optim. Calc. Var., 27(7), 2021, 29 pp.

[21]

Li, T.-T., Lu, X. and Rao, B., Exact boundary synchronization by groups for a coupled system of wave equations with coupled Robin boundary controls on a general bounded domain, SIAM J. Control Optim., in press.

[22]

Li T-T, Rao B. Synchronisation exacte d’un système couplé d’équations des ondes par des contrôles frontières de Dirichlet. C. R. Math. Acad. Sci. Paris, 2012, 350: 767-772

[23]

Li T-T, Rao B. Exact synchronization for a coupled system of wave equation with Dirichlet boundary controls. Chin. Ann. Math. Ser. B, 2013, 34: 139-160

[24]

Li T T, Rao B P. Critères du type de Kálmán pour la contrôlabilité approchée et la synchronisation approchée d’un système couplé d’équations des ondes. C. R. Acad. Sci. Paris, 2015, 353(1): 63-68

[25]

Li T-T, Rao B. Criteria of Kalman type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls. SIAM J. Control Optim., 2016, 54: 49-72

[26]

Li T T, Rao B. Exact synchronization by groups for a coupled system of wave equations with Dirichlet boundary control. J. Math. Pures Appl., 2016, 105: 86-101

[27]

Li T-T, Rao B. On the approximate boundary synchronization for a coupled system of wave equations: Direct and indirect controls. ESIAM: Contr. Optim. Calc. Var., 2018, 24: 1675-1704

[28]

Li, T.-T. and Rao, B., Boundary Synchronization for Hyperbolic Systems, Progress in NonLinear Differential Equations and Their Applications, Subseries in Control, 94, Birkhäuser, 2019.

[29]

Li, T.-T. and Rao, B., Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems, https://doi.org/10.1051/cocv/2020062.

[30]

Li, T.-T. and Rao, B., Approximate boundary synchronization by groups for a coupled system of wave equations with coupled Robin boundary conditions, ESAIM Control Optim. Calc. Var., 27(10), 2021, 30 pp.

[31]

Li T-T, Rao B. Uniform synchronization of an abstract linear second order evolution system. SIAM J. Control Optim., 2021, 59: 2740-2755

[32]

Li T-T, Rao B. Asymptotic synchronization of a coupled system of wave equations on a rectangular domain with reflecting sides. Asymptotic Analysis, 2022, 128: 85-102

[33]

Lions J-L. Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Vol. 1, 1988, Paris: Masson

[34]

Lissy P, Zuazua E. Internal observability for coupled systems of linear partial differential equations. SIAM J. Control Optim., 2019, 57: 832-853

[35]

Liu Z, Rao B. Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys., 2009, 60: 54-69

[36]

Nicaise S, Pignotti C. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete Contin. Dyn. Syst., 2016, 9: 791-813

[37]

Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983, New York: Springer-Verlag

[38]

Rao, B., On the sensitivity of the transmission of boundary dissipation for strongly coupled and indirectly damped systems of wave equations, Z. Angew. Math. Phys., 70(75), 2019, 25 pp.

[39]

Rauch J, Taylor M. Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana University Mathematics Journal, 1974, 24: 79-86

[40]

Tataru D. Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem. Comm. Partial Diff. Equs., 1995, 20: 855-884

[41]

Tebou L-T. Stabilization of the wave equation with localized nonlinear damping. J. Diff. Equs., 1998, 145: 502-524

[42]

Wang L, Yan Q. Optimal control problem for exact synchronization of parabolic system. Math. Control Relat. Fields, 2019, 9: 411-424

[43]

Wiener N. Cybernetics, or Control and Communication in the Animal and the Machine, 1967 2nd ed. Cambridge USA: MIT Press

[44]

Zuazua E. Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Part. Diff. Equs., 1990, 15: 205-235

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/