Continuity of Almost Harmonic Maps with the Perturbation Term in a Critical Space

Mati ur Rahman , Yingshu Lü , Deliang Xu

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (4) : 585 -600.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (4) : 585 -600. DOI: 10.1007/s11401-022-0347-0
Article

Continuity of Almost Harmonic Maps with the Perturbation Term in a Critical Space

Author information +
History +
PDF

Abstract

The authors study the continuity estimate of the solutions of almost harmonic maps with the perturbation term f in a critical integrability class (Zygmund class) ${L^{{n \over 2}}}$, log q L, n is the dimension with n ≥ 3. They prove that when $q > {n \over 2}$ the solution must be continuous and they can get continuity modulus estimates. As a byproduct of their method, they also study boundary continuity for the almost harmonic maps in high dimension.

Keywords

Harmonic maps / Nonlinear elliptic PDE / Boundary regularity

Cite this article

Download citation ▾
Mati ur Rahman, Yingshu Lü, Deliang Xu. Continuity of Almost Harmonic Maps with the Perturbation Term in a Critical Space. Chinese Annals of Mathematics, Series B, 2022, 43(4): 585-600 DOI:10.1007/s11401-022-0347-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bethuel F. On the singular set of stationary harmonic maps. Manuscripta Math., 1993, 78(4): 417-443

[2]

Chen Q, Jost J, Wang G F, Zhu M M. The boundary value problem for Dirac-harmonic maps. J. Eur. Math. Soc., 2013, 15(3): 997-1031

[3]

Evans L C. Partial regularity for stationary harmonic maps into spheres. Arch. Rational Mech. Anal., 1991, 116(2): 101-113

[4]

Giaquinta M. Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems, 1983, Princeton, NJ: Princeton University Press

[5]

Hélein F. Régularité des applications faiblement harmoniques entre une surface et une sphére. C. R. Acad. Sci. Paris Sér. I Math., 1990, 311(9): 519-524

[6]

Hélein F. Regularity of weakly harmonic maps from a surface into a manifold with symmetries. Manuscripta Math., 1991, 70(2): 203-218

[7]

Lamm T. Fourth order approximation of harmonic maps from surfaces. Calc. Var. Partial Differential Equations, 2006, 27(2): 125-157

[8]

Lamm T, Rivière T. Conservation laws for fourth order systems in four dimensions. Comm. Partial Differential Equations, 2008, 33(2): 245-262

[9]

Li J Y, Zhu X R. Small energy compactness for approximate harmonic mappings. Commun. Contemp. Math., 2011, 13(5): 741-763

[10]

Lin F H, Wang C Y. Harmonic and quasi-harmonic spheres. Comm. Anal. Geom., 1999, 7(2): 397-429

[11]

Lin F H, Wang C Y. Harmonic and quasi-harmonic spheres, part II. Comm. Anal. Geom., 2002, 10(2): 341-375

[12]

Morrey C B. The problem of Plateau on a Riemannian manifold. Ann. of Math., 1948, 49(2): 807-851

[13]

Morrey C B. Multiple Integrals in the Calculus of Variations, Die Grundlehren der Mathematischen Wissenschaften, 1966, New York: Springer-Verlag Band 130

[14]

Moser R. Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps. Math. Z., 2003, 243(2): 263-289

[15]

Moser R. A Trudinger type inequality for maps into a Riemannian manifold. Ann. Global Anal. Geom., 2009, 35(1): 83-90

[16]

Moser R. An L p regularity theory for harmonic maps. Trans. Amer. Math. Soc., 2015, 367(1): 1-30

[17]

Müller F, Schikorra A. Boundary regularity via Uhlenbeck-Riviére decomposition. Analysis, 2009, 29(2): 199-220

[18]

Price P. A monotonicity formula for Yang-Mills fields. Manuscripta Math., 1983, 43(2): 131-166

[19]

Rivière T. Conservation laws for conformally invariant variational problems. Invent. Math., 2007, 168(1): 1-22

[20]

Rivière T, Struwe M. Partial regularity for harmonic maps and related problems. Comm. Pure Appl. Math., 2008, 61(4): 451-463

[21]

Sacks J, Uhlenbeck K. The existence of minimal immersions of 2-spheres. Ann. of Math., 1981, 113(1): 1-24

[22]

Schoen R, Uhlenbeck K. A regularity theory for harmonic maps. J. Differential Geometry., 1982, 17(2): 307-335

[23]

Sharp B. Higher integrability for solutions to a system of critical elliptic PDE. Methods. Appl. Anal., 2014, 21(2): 221-240

[24]

Sharp B, Topping P. Decay estimates for Rivière’s equation, with applications to regularity and compactness. Trans. Amer. Math. Soc., 2013, 365(5): 2317-2339

[25]

Struwe M. On the evolution of harmonic maps in higher dimensions. J. Differential Geom., 1988, 28(3): 485-502

[26]

Struwe M. Partial regularity for biharmonic maps, revisited. Calc. Var. Partial Differential Equations, 2008, 33(2): 249-262

[27]

Strzelecki P. A new proof of regularity of weak solutions of the H-surface equation. Calc. Var. Partial Differtial Equtions., 2003, 16(3): 227-242

[28]

Uhlenbeck K K. Connections with L p bounds on curvature. Comm. Math. Phys., 1982, 83(1): 31-42

[29]

Wang C Y, Xu D L. Regularity of Dirac-Harmonic maps. Int. Math. Res. Not., 2009, 20: 3759-3792

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/