A Second Main Theorem of Nevanlinna Theory for Closed Subschemes in Subgeneral Position

Guangsheng Yu

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (4) : 567 -584.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (4) : 567 -584. DOI: 10.1007/s11401-022-0346-1
Article

A Second Main Theorem of Nevanlinna Theory for Closed Subschemes in Subgeneral Position

Author information +
History +
PDF

Abstract

In this paper, by using Seshadri constants for subschemes, the author establishes a second main theorem of Nevanlinna theory for holomorphic curves intersecting closed subschemes in (weak) subgeneral position. As an application of his second main theorem, he obtain a Brody hyperbolicity result for the complement of nef effective divisors. He also give the corresponding Schmidt’s subspace theorem and arithmetic hyperbolicity result in Diophantine approximation.

Keywords

Second main theorem / In general position / Closed subscheme / Seshadri constant / Schmidt’s subspace theorem / Hyperbolicity

Cite this article

Download citation ▾
Guangsheng Yu. A Second Main Theorem of Nevanlinna Theory for Closed Subschemes in Subgeneral Position. Chinese Annals of Mathematics, Series B, 2022, 43(4): 567-584 DOI:10.1007/s11401-022-0346-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aroca J M, Hironaka H, Vicente J L. Complex Analytic Desingularization, 2018, Tokyo: Springer-Verlag

[2]

Cartan H. Sur les zeros des combinaisions linearires de p fonctions holomorpes données. Mathematica, 1933, 7: 80-103

[3]

Chen Z, Ru M, Yan Q. The degenerated second main theorem and Schmidt’s subspace theorem. Sci. China Math., 2012, 55(7): 1367-1380

[4]

Cutkosky S D, Ein L, Lazarsfeld R. Positivity and complexity of ideal sheaves. Math. Ann., 2001, 321(2): 213-234

[5]

Ellwood D, Hauser H, Mori S, Shicho J. The Resolution of Singular Algebraic Varieties, 2014, Providence: American Mathematical Society

[6]

Hartshorne R. Algebraic Geometry, 1977, New York: Springer-Verlag

[7]

He Y, Ru M. A generalized subspace theorem for closed subschemes in subgeneral position. J. Number Theory, 2021, 229: 125-141

[8]

Heier G, Levin A. On the degeneracy of integral points and entire curves in the complement of nef effective divisors. Journal of Number Theory, 2020, 217: 301-319

[9]

Heier G, Levin A. A generalized Schmidt subspace theorem for closed subschemes. Amer. J. Math., 2021, 143(1): 213-226

[10]

Matsumura H. Commutative Ring Theory, 1986, Cambridge: Cambridge University Press

[11]

McKinnon D, Roth D. Seshadri constants, Diophantine approximation, and Roth’s theorem for arbitrary varieties. Invent. Math., 2015, 200(2): 513-583

[12]

Nochka E I. On the theory of meromorphic functions. Sov. Math. Dokl., 1983, 27: 377-381

[13]

Quang S D. Degeneracy second main theorems for meromorphic mappings into projective varieties with hypersurfaces. Tran. AMS, 2019, 371(4): 2431-2453

[14]

Ru M. A defect relation for holomorphic curves intersecting hypersurfaces. Amer. J. Math., 2004, 126(1): 215-226

[15]

Ru M. Holomorphic curves into algebraic varieties. Ann. Math. (2), 2009, 169(1): 255-267

[16]

Ru M, Vojta P. A birational Nevanlinna constant and its consequences. Amer. J. Math., 2020, 142(3): 957-991

[17]

Ru M, Wang J T-Y. A subspace theorem for subvarieties. Algebra & Number Theory, 2017, 11–10: 2323-2337

[18]

Ru M, Wang J T-Y. The Ru-Vojta result for subvarieties. Int. J. Number Theory, 2022, 18: 61-74

[19]

Silverman J H. Arithmetic distance functions and height functions in Diophantine geometry. Math. Ann., 1987, 279(2): 193-216

[20]

Vojta P. Diophantine Approximations and Value Distribution Theory, 1987, Berlin: Springer-Verlag

[21]

Vojta P. Diophantine Approximation and Nevanlinna Theory, Arithmetic Geometry, 2011, Berlin: Springer-Verlag 111-224

[22]

Vojta, P., Birational Nevanlinna constants, beta constants, and Diophantine approximation to closed subschemes, 2020, arXiv: 2008.00405.

[23]

Yamanoi, Katsutoshi, Kobayashi hyperbolicity and higher-dimensional Nevanlinna theory, Geometry and Analysis on Manifolds, Springer-Verlag, International Publishing, 2015, 209–273.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/