Equivariant Mapping Class Group and Orbit Braid Group

Shuya Cai , Hao Li

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (4) : 485 -498.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (4) : 485 -498. DOI: 10.1007/s11401-022-0341-6
Article

Equivariant Mapping Class Group and Orbit Braid Group

Author information +
History +
PDF

Abstract

Motivated by the work of Birman about the relationship between mapping class groups and braid groups, the authors discuss the relationship between the orbit braid group and the equivariant mapping class group on the closed surface M with a free and proper group action in this paper. Their construction is based on the exact sequence given by the fibration ${\cal F}_0^GM \to F\left( {M/G,n} \right)$. The conclusion is closely connected with the braid group of the quotient space. Comparing with the situation without the group action, there is a big difference when the quotient space is ${\mathbb{T}^2}$.

Keywords

Equivariant mapping class group / Orbit braid group / Evaluation map / Center of braid group

Cite this article

Download citation ▾
Shuya Cai, Hao Li. Equivariant Mapping Class Group and Orbit Braid Group. Chinese Annals of Mathematics, Series B, 2022, 43(4): 485-498 DOI:10.1007/s11401-022-0341-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Artin E. Theorie der Zöpfe. Abh. Math. Sem. Univ. Hamburg, 1925, 4(1): 47-72

[2]

Artin E. The theory of braids. American Scientist, 1950, 38(1): 112-119

[3]

Artin E. Braids and permutations. Ann. of Math., 1947, 48(2): 643-649

[4]

Bellingeri P, Godelle E. Positive presentations of surface braid groups. Journal of Knot Theory and Its Ramifications, 2007, 16(9): 1219-1233

[5]

Birman J S. Mapping class groups and their relationship to braid groups. Commnications on Pure and Applied Mathematics, 1969, 22: 213-238

[6]

Birman J S. Braids, Links and Mapping Class Group, 1975, New Jersey: Princeton University Press

[7]

Fadell E, Buskirk J V. The braid groups of ${\mathbb{E}^2}$ and ${\mathbb{S}^2}$. Duke Math. J., 1962, 29: 243-257

[8]

Fadell E, Neuwirth L. Configuration spaces. Math. Scand., 1962, 10: 111-118

[9]

Fox R H, Neuwirth L. The braid groups. Math. Scand., 1962, 10: 119-126

[10]

Gillette R, Buskirk J V. The word problem and consequences for the braid groups and mapping class groups of the 2-sphere. Transactions of the American Mathematical Society, 1968, 131: 277-296

[11]

Goncalves D L, Guaschi J. The roots of the full twist for surface braid groups. Mathematical Proceedings of the Cambridge Philosophical Society, 2004, 137(2): 307-320

[12]

Goncalves D L, Guaschi J. The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence. Geom. Dedicata, 2007, 130: 93-107

[13]

Goncalves D L, Guaschi J. Surface braid groups and coverings. Journal of the London Mathematical Society, 2012, 85(3): 855-868

[14]

Goncalves D L, Guaschi J, Maldonado M. Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces. Confluentes Mathematici, 2018, 10(1): 41-61

[15]

Lee J M. Quotient Manifolds, 2013, New York: Springer-Verlag

[16]

Li, F. L., Li, H. and Lü, Z., A theory of orbit braids, 2019, arXiv: 1903.11501.

[17]

Murasugi K. The center of a group with a single defining relation. Mathematische Annalen, 1964, 155(3): 246-251

[18]

Paris L, Rolfsen D. Geometric Subgroups of Surface Braid Groups. Annales- Institut Fourier, 1998, 49(2): 417-472

[19]

Steenrod N. The Topology of Fibre Bundles, 1974, New Jersey: Princeton University Press

[20]

Xicotencatl M A. Orbit configuration space, infinitesimal braid group relations in homology and equivariant loop spaces, 1997, New York: University of Rochester

[21]

Zariski O. The topological discriminant group of a Riemann surface of genus p. Amer. J. Math., 1937, 59: 335-358

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/