Critical Trace Trudinger-Moser Inequalities on a Compact Riemann Surface with Smooth Boundary

Mengjie Zhang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (3) : 425 -442.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (3) : 425 -442. DOI: 10.1007/s11401-022-0333-6
Article

Critical Trace Trudinger-Moser Inequalities on a Compact Riemann Surface with Smooth Boundary

Author information +
History +
PDF

Abstract

In this paper, the author concerns two trace Trudinger-Moser inequalities and obtains the corresponding extremal functions on a compact Riemann surface (Σ, g) with smooth boundary Σ. Explicitly, let ${\lambda _1}\left( {\partial \sum } \right) = \mathop {\inf }\limits_{u \in {W^{1,2}}\left( {\sum ,g} \right),\int_{\partial \sum } {u{\rm{d}}{s_g} = 0,u\not \equiv 0} } {{\int_\sum {\left( {{{\left| {{\nabla _g}u} \right|}^2} + {u^2}} \right){\rm{d}}{v_g}} } \over {\int_{\partial \sum } {{u^2}{\rm{d}}{s_g}} }}$ and ${\cal H} = \left\{ {u \in {W^{1,2}}\left( {\sum ,g} \right):\int_\sum {\left( {{{\left| {{\nabla _g}u} \right|}^2} + {u^2}} \right){\rm{d}}{v_g} - \alpha \int_{\partial \sum } {{u^2}{\rm{d}}{s_g} \le 1\,\,\,\,\,{\rm{and}}\,\,\,\int_{\partial \sum } {u\,{\rm{d}}{s_g} = 0} } } } \right\},$ where W 1,2(Σ, g) denotes the usual Sobolev space and ∇ g stands for the gradient operator. By the method of blow-up analysis, we obtain $\mathop {\sup }\limits_{u \in {\cal H}} \int_{\partial \sum } {{{\rm{e}}^{\pi {u^2}}}{\rm{d}}{s_g}} \left\{ {\matrix{{ < + \infty ,} \hfill & {0 \le \alpha < {\lambda _1}\left( {\partial \sum } \right),} \hfill \cr { = + \infty ,} \hfill & {\alpha \ge {\lambda _1}\left( {\partial \sum } \right).} \hfill \cr } } \right.$ Moreover, the author proves the above supremum is attained by a function ${u_\alpha } \in {\cal H} \cap \,{C^\infty }\left( {\overline \sum } \right)$ for any 0 ≤ α < λ1(Σ). Further, he extends the result to the case of higher order eigenvalues. The results generalize those of [Li, Y. and Liu, P., Moser-Trudinger inequality on the boundary of compact Riemannian surface, Math. Z., 250, 2005, 363–386], [Yang, Y., Moser-Trudinger trace inequalities on a compact Riemannian surface with boundary, Pacific J. Math., 227, 2006, 177–200] and [Yang, Y., Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two, J. Diff. Eq., 258, 2015, 3161–3193].

Keywords

Trudinger-Moser inequality / Riemann surface / Blow-up analysis / Extremal function

Cite this article

Download citation ▾
Mengjie Zhang. Critical Trace Trudinger-Moser Inequalities on a Compact Riemann Surface with Smooth Boundary. Chinese Annals of Mathematics, Series B, 2022, 43(3): 425-442 DOI:10.1007/s11401-022-0333-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdimurthiDruet O. Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality. Comm. Partial Differential Equations, 2004, 29: 295-322

[2]

AdimurthiStruwe M. Global compactness properties of semilinear elliptic equation with critical exponential growth. J. Funct. Anal., 2000, 175: 125-167

[3]

Aubin T. Sur la function exponentielle. C. R. Acad. Sci. Paris Sér. A-B, 1970, 270: A1514-A1516

[4]

Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, New York: Springer-Verlag

[5]

Carleson L, Chang S. On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math., 1986, 110: 113-127

[6]

Cherrier P. Une inégalité de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math., 1979, 103: 353-374

[7]

de Souza M, do Ó J. A sharp Trudinger-Moser type inequality in ℝ2. Trans. Amer. Math. Soc., 2014, 366: 4513-4549

[8]

Ding W, Jost J, Li J, Wang G. The differential equation ∇u = 8π− 8πhe u on a compact Riemann surface. Asian J. Math., 1997, 1: 230-248

[9]

do Ó J, de Souza M. Trudinger-Moser inequality on the whole plane and extremal functions. Commun. Contemp. Math., 2016, 18(5): 1550054 32 pp

[10]

Fang Y, Zhang M. On a class of Kazdan-Warner equations. Turkish J. Math., 2018, 42: 2400-2416

[11]

Flucher M. Extremal functions for the trudinger-moser inequality in 2 dimensions. Comment. Math. Helv., 1992, 67: 471-497

[12]

Fontana L. Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv., 1993, 68: 415-454

[13]

Li Y. Moser-Trudinger inequality on compact Riemannian manifolds of dimension two. J. Partial Differential Equations, 2001, 14: 163-192

[14]

Li Y. Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds. Sci. China Ser. A, 2005, 48: 618-648

[15]

Li Y, Liu P. Moser-Trudinger inequality on the boundary of compact Riemannian surface. Math. Z., 2005, 250: 363-386

[16]

Li Y, Zhu M. Uniqueness theorems through the method of moving spheres. Duke Math. J., 1995, 80: 383-417

[17]

Lin K. Extremal functions for Moser’s inequality. Trans. Amer. Math. Soc., 1996, 348: 2663-2671

[18]

Liu P. A Moser-Trudinger type inequality and blow-up analysis on compact Riemannian surface, 2005, Germany: Max-Plank Institute

[19]

Mancini G, Martinazzi L. Extremals for fractional Moser-Trudinger inequalities in dimension 1 via harmonic extensions and commutator estimates. Adv. Nonlinear Stud., 2020, 20: 599-632

[20]

Moser J. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J., 1970, 20: 1077-1092

[21]

Nguyen V. Improved Moser-Trudinger inequality for functions with mean value zero in ℝ n and its extremal functions. Nonlinear Anal., 2017, 163: 127-145

[22]

Nguyen V. Improved Moser-Trudinger type inequalities in the hyperbolic space ℍ n. Nonlinear Anal., 2018, 168: 67-80

[23]

Osgood B, Phillips R, Sarnak P. Extremals of determinants of Laplacians. J. Funct. Anal., 1988, 80: 148-211

[24]

Peetre J. Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier, 1966, 16: 279-317

[25]

Pohozaev, S., The Sobolev embedding in the special case pl = n Proceedings of the Technical Scientific Conference on Advances of Scientific Research 1964–1965, Math. Sections, Moscov. Energet. Inst., 1965, 158–170.

[26]

Tintarev C. Trudinger-Moser inequality with remainder terms. J. Funct. Anal., 2014, 266: 55-66

[27]

Trudinger N. On embeddings into Orlicz spaces and some applications. J. Math. Mech., 1967, 17: 473-484

[28]

Yang Y. Moser-Trudinger trace inequalities on a compact Riemannian surface with boundary. Pacific J. Math., 2006, 227: 177-200

[29]

Yang Y. A sharp form of trace Moser-Trudinger inequality on compact Riemannian surface with boundary. Math. Z., 2007, 255: 373-392

[30]

Yang Y. Extremal functions for Trudinger-Moser inequalities of Adimurthi-Druet type in dimension two. J. Diff. Eq., 2015, 258: 3161-3193

[31]

Yang, Y. and Zhou, J., Blow-up analysis involving isothermal coordinates on the boundary of compact Riemann surface, J. Math. Anal. Appl., 504(2), 2021, No. 125440, 39 pp.

[32]

Yudovich V. Some estimates connected with integral operators and with solutions of elliptic equations. Sov. Math. Docl., 1961, 2: 746-749

[33]

Zhang M. On extremals for the Trudinger-Moser inequality with vanishing weight in the N-dimensional unit ball. Math. Inequal. Appl., 2020, 23: 699-711

[34]

Zhang M. Extremals for a Trudinger-Moser inequality with a vanishing weight in the unit disk. Anal. Math., 2020, 46: 639-654

[35]

Zhang M. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Commun. Pure Appl. Anal., 2021, 20: 1721-1735

[36]

Zhang M. A Trudinger-Moser inequality with mean value zero on a compact Riemann surface with boundary. Math. Inequal. Appl., 2021, 24: 775-791

[37]

Zhang M. A Trudinger-Moser inequality involving L p-norm on a closed riemann surface. Acta Math. Sin. (Engl. Ser.), 2021, 37: 538-550

[38]

Zhu J. Improved Moser-Trudinger inequality involving L p norm in n dimensions. Adv. Nonlinear Stud., 2014, 14: 273-293

[39]

Zhu X. A generalized Trudinger-Moser inequality on a compact Riemannian surface with conical singularities. Sci. China Math., 2019, 62: 699-718

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/