On a Supercongruence Conjecture of Z.-W. Sun

Guo-shuai Mao

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (3) : 417 -424.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (3) : 417 -424. DOI: 10.1007/s11401-022-0332-7
Article

On a Supercongruence Conjecture of Z.-W. Sun

Author information +
History +
PDF

Abstract

In this paper, the author partly proves a supercongruence conjectured by Z.-W. Sun in 2013. Let p be an odd prime and let a ∈ ℤ+. Then, if p ≡ 1 (mod 3) $\sum\limits_{k = 0}^{\left\lfloor {{5 \over 6}{p^a}} \right\rfloor } {{{\left( {\matrix{{2k} \cr k \cr } } \right)} \over {{{16}^k}}} \equiv \left( {{3 \over {{p^a}}}} \right)\,\,\left( {\bmod \,{p^2}} \right)} $ is obtained, where (÷) is the Jacobi symbol.

Keywords

Supercongruences / Binomial coefficients / Fermat quotient / Jacobi symbol

Cite this article

Download citation ▾
Guo-shuai Mao. On a Supercongruence Conjecture of Z.-W. Sun. Chinese Annals of Mathematics, Series B, 2022, 43(3): 417-424 DOI:10.1007/s11401-022-0332-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Apagodu M, Zeilberger D. Using the “freshman’s dream” to prove combinatorial congruences. Amer. Math. Monthly, 2017, 124: 597-608

[2]

Gould H W. Combinatorial Identities, 1972, Morgantown: Morgantown Printing and Binding Co.

[3]

Guo V J W. Proof of a supercongruence conjectured by Z.-H. Sun. Integral Transforms Spec. Funct., 2014, 25: 1009-1015

[4]

Guo V J W, Liu J-C. Some congruences related to a congruence of Van Hamme. Integral Transforms Spec. Funct., 2020, 31: 221-231

[5]

Lehmer E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math., 1938, 39: 350-360

[6]

Liu J-C. Congruences for truncated hypergeometric series 2 F 1. Bull. Aust. Math. Soc., 2017, 96: 14-23

[7]

Liu J-C, Petrov F. Congruences on sums of q-binomial coefficients. Adv. Appl. Math., 2020, 116: 102003

[8]

Long L, Ramakrishna R. Some supercongruences occurring in truncated hypergeometric series. Adv. Math., 2016, 290: 773-808

[9]

Mao G-S. Proof of a conjecture of Adamchuk. J. Combin. Theory, Ser. A, 2021, 182: Art

[10]

Mao G-S, Cao Z J. On two congruence conjectures. C. R. Acad. Sci. Paris, Ser. I, 2019, 357: 815-822

[11]

Mao G-S, Sun Z-W. New congruences involving products of two binomial coefficients. Ramanujan J., 2019, 49(2): 237-256

[12]

Mao G-S, Wang J. On some congruences invloving Domb numbers and harmonic numbers. Int. J. Number Theory, 2019, 15: 2179-2200

[13]

Pan H, Sun Z-W. Proof of three conjectures of congruences. Sci. China Math., 2014, 57(10): 2091-2102

[14]

Schneider C. Symbolic summation assists combinatorics. Sém. Lothar. Combin., 2007, 56: B56b 36pp

[15]

Sun Z-W. Fibonacci numbers modulo cubes of primes. Taiwanese J. Math., 2013, 17(5): 1523-1543

[16]

Sun Z-W, Tauraso R. New congruences for central binomial coefficients. Adv. Appl. Math., 2010, 45: 125-148

[17]

Sun Z-W, Tauraso R. On some new congruences for binomial coefficients. Int. J. Number Theory, 2011, 7: 645-662

[18]

Sury, B., Wang, T.-M. and Zhao, F.-Z., Identities involving reciprocals of binomial coefficients, J. Integer Seq., 7, 2004, Art. 04.2.8.

[19]

Wang C, Sun Z-W. Divisibility results on Franel numbers and related polynomials. Int. J. Number Theory, 2019, 15(2): 433-444

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/