Cartan’s Second Main Theorem and Mason’s Theorem for Jackson Difference Operator

Huixin Dai , Tingbin Cao , Yezhou Li

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (3) : 383 -400.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (3) : 383 -400. DOI: 10.1007/s11401-022-0330-9
Article

Cartan’s Second Main Theorem and Mason’s Theorem for Jackson Difference Operator

Author information +
History +
PDF

Abstract

Let f: ℂ → ℙ n be a holomorphic curve of order zero. The authors establish a Jackson difference analogue of Cartan’s second main theorem for the Jackson q-Casorati determinant and introduce a truncated second main theorem of Jackson difference operator for holomorphic curves. In addition, a Jackson difference Mason’s theorem is proved by using a Jackson difference radical of a polynomial. Furthermore, they extend the Mason’s theorem for m + 1 polynomials. Some examples are constructed to show that their results are accurate.

Keywords

Jackson difference operator / Nevanlinna theory / Holomorphic curve / Cartan’s second main theorem / Mason’s theorem / Polynomial

Cite this article

Download citation ▾
Huixin Dai, Tingbin Cao, Yezhou Li. Cartan’s Second Main Theorem and Mason’s Theorem for Jackson Difference Operator. Chinese Annals of Mathematics, Series B, 2022, 43(3): 383-400 DOI:10.1007/s11401-022-0330-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bangerezako, G., An Introduction to q-Difference Equations, Preprint, Bujumbura, 2008.

[2]

Barnett D C, Halburd R G, Korhonen R J, Morgan W. Nevanlinna theory for the q-difference operator and meomorphic solutions of q-difference equations. Proc. R. Soc. Edinb. Sect. A, 2007, 137(3): 457-474

[3]

Bayat M, Teimoori H. A generalization of Mason’s theorem for four polynomials. Elem. der Math., 2004, 59: 23-28

[4]

Cao T B, Dai H X, Wang J. Nevanlinna theory for Jackson difference operators and entire solutions of q-difference equations. Anal. Math., 2021, 47: 529-557

[5]

Cao T B, Korhonen R J. A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables. J. Math. Anal. Appl., 2016, 444(2): 1114-1132

[6]

Cao T B, Korhonen R J. Value distribution of q-differences of meromorphic functions in several complex variables. Anal. Math., 2020, 46(4): 699-736

[7]

Cao T B, Nie J. The second main theorem for holomorphic curves intersecting hypersurfaces with Casorati determinant into complex projective spaces. Ann. Acad. Sci. Fenn. Math., 2017, 42: 979-996

[8]

Cartan H. Sur lés zeros des combinasions linzéaires de p fonctions holomorphes donnzées. Math. Cluj., 1933, 7: 5-31

[9]

Cherry W, Ye Z. Nevanlinna’s Theory of Value Distribution, 2001, Berlin: Springer-Verlag

[10]

Ernst, T., The History of q-Calculus and a New Method, Department of Mathematics, Uppsala University, 2000.

[11]

Gundersen G G. The strength of Cartan’s version of Nevanlinna theory. Bull. Lond. Math. Soc., 2004, 36(4): 433-454

[12]

Halburd R G, Korhonen R J. Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math., 2004, 31(2): 463-478

[13]

Halburd R G, Korhonen R J, Tohge K. Holomorphic curves with shift-invariant hyperplane preimage. Trans. Amer. Math. Soc., 2014, 366(8): 4267-4298

[14]

Ishizaki K, Korhonen R J, Li N, Tohge K. A Stothers-Mason theorem with a difference radical. Math. Z., 2021, 298: 671-696

[15]

Jackson F H. On q-difference equations. Amer. J. Math., 1910, 32: 305-314

[16]

Jackson F H. On q-definite integrals. Quart. J. Pure and Appl. Math., 1910, 41: 193-203

[17]

Lang S. Introduction to Complex Hyperbolic Spaces, 1987, New York: Springer-Verlag

[18]

Li Y Z, Song N F. A note on q-difference operator and related limit direction. Acta Math. Sci., 2013, 38(6): 1678-1688

[19]

Mason R C. Diophantine Equations over Function Fields, 1984, Cambridge: Cambridge University Press

[20]

Ru M. Nevanlinna Theory and its Relation to Diophatine Approximation, 2001, Singapore: World Scientific Publishing Company

[21]

Snyder N. An alternate proof of Mason’s theorem. Elem. Math., 2000, 55(3): 93-94

[22]

Stothers W W. Polynomial identities and Hauptmoduln. Q. J. Math., 1981, 32(2): 349-370

[23]

Yang L. Value Distribution Theory, 1993, Berlin: Springer-Verlag

[24]

Zhou W X, Liu H Z. Existence solutions for boundary value problem of nonlinear fractional q-difference equations. Adv. Differ. Equ., 2013, 1: 1-12

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/