A Generalization of Lappan’s Theorem to Higher Dimensional Complex Projective Space

Xiaojun Liu , Han Wang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (3) : 373 -382.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (3) : 373 -382. DOI: 10.1007/s11401-022-0329-2
Article

A Generalization of Lappan’s Theorem to Higher Dimensional Complex Projective Space

Author information +
History +
PDF

Abstract

In this paper, the authors discuss a generalization of Lappan’s theorem to higher dimensional complex projective space and get the following result: Let f be a holomorphic mapping of Δ into ℙ n(ℂ), and let H 1, ⋯, H q be hyperplanes in general position in ℙ n(ℂ). Assume that $\sup \left\{ {\left( {1 - {{\left| z \right|}^2}} \right){f^\sharp }\left( z \right):z \in \bigcup\limits_{j = 1}^q {{f^{ - 1}}\left( {{H_j}} \right)} } \right\} < \infty ,$ if q ≥ 2n 2 + 3, then f is normal.

Keywords

Holomorphic mapping / Normal family / Hyperplanes

Cite this article

Download citation ▾
Xiaojun Liu, Han Wang. A Generalization of Lappan’s Theorem to Higher Dimensional Complex Projective Space. Chinese Annals of Mathematics, Series B, 2022, 43(3): 373-382 DOI:10.1007/s11401-022-0329-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Montel P. Sur les familles de fonctions analytiques qui admettent des valeurs exceptionnelles dans un domaine. Ann. Sci. École Norm. Sup., 1921, 29(3): 487-535

[2]

Lehto O, Virtanen K L. Boundary behaviour and normal meromorphic functions. Acta Math., 1957, 97(1): 47-65

[3]

Pommerenke Ch. Problems in complex function theory. Bull. Lond. Math. Soc., 1972, 4(3): 354-366

[4]

Lappan P. A criterion for a meromorphic function to be normal. Comment. Math. Helv., 1974, 49(1): 492-495

[5]

Tan T V. Higher dimensional generalizations of some classical theorems on normality of meromorphic functions. Michigan Mathematical Journal, 2021, 1(1): 1-11

[6]

Chen Z H, Yan Q M. Uniqueness theorem of meromorphic mappings into ℙ n(ℂ) sharing 2n + 3 hyperplanes regardless of multiplicities. Int. J. Math., 2009, 20(6): 717-726

[7]

Ru M. Nevanlinna Theory and its Relation to Diophantine Approximation, 2001, Singapore: World Scientific Publishing

[8]

Cherry W, Eremenko A. Landau’s theorem for holomorphic curves in projective space and the Kobayashi metric on hyperplane complement. Pure and Appl. Math. Quarterly, 2011, 7(1): 199-221

[9]

Nochka E I. On the theory of meromorphic functions. Soviet. Math. Dokl., 1983, 27: 377-391

[10]

Aladro G, Krantz S G. A criterion for normality in ℂ n. J. Math. Anal. Appl., 1991, 161(1): 1-8

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/