Local Unstable Entropy and Local Unstable Pressure for Partially Hyperbolic Endomorphisms

Xinsheng Wang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (1) : 137 -160.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (1) : 137 -160. DOI: 10.1007/s11401-022-0327-4
Article

Local Unstable Entropy and Local Unstable Pressure for Partially Hyperbolic Endomorphisms

Author information +
History +
PDF

Abstract

In this paper, local unstable metric entropy, local unstable topological entropy and local unstable pressure for partially hyperbolic endomorphisms are introduced and investigated. Specially, two variational principles concerning relationships among the above mentioned numbers are formulated.

Keywords

Partially hyperbolic endomorphism / Local unstable metric entropy / Local unstable topological entropy / Local unstable pressure / Variational principle

Cite this article

Download citation ▾
Xinsheng Wang. Local Unstable Entropy and Local Unstable Pressure for Partially Hyperbolic Endomorphisms. Chinese Annals of Mathematics, Series B, 2022, 43(1): 137-160 DOI:10.1007/s11401-022-0327-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blanchard F, Glasner E, Host B. A variation on the variational principle and applications to entropy pairs. Ergodic Theory Dynam. Systems, 1997, 17(1): 29-43

[2]

Glasner E, Weiss B. On the interplay between measurable and topological dynamics. Handbook of Dynamical Systems, 1B, 2005, North-Holland, Amsterdam: Hasselblatt and Katok 597-648

[3]

Hu H, Hua Y, Wu W. Unstable entropies and variational principle for partially hyperbolic diffeomorphsims. Adv. Math., 2017, 321: 31-68

[4]

Hu, H., Wu, W. and Zhu, Y., Unstable pressure and u-equilibrium states for partially hyperbolic diffeomorphsims, Ergodic Theory Dynam. Systems, Doi:https://doi.org/10.1017/etds.2020.105.

[5]

Huang W, Ye X. A local variational relation and applications. Israel J. Math., 2006, 151(1): 237-279

[6]

Huang W, Ye X, Zhang G. A local variational principle for conditional entropy. Ergodic Theory Dynam. Systems, 2006, 26(1): 219-245

[7]

Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems, 1995, Cambridge: Cambridge University Press

[8]

Ledrappier F, Young L-S. The metric entropy of diffeomorphisms: Part I: Characterization of measures satisfying Pesin’s entropy formula. Ann. Math., 1985, 122: 509-539

[9]

Ledrappier F, Young L-S. The metric entropy of diffeomorphisms: Part II: Relations between entropy, exponents and dimension. Ann. Math., 1985, 122: 540-574

[10]

Ma X, Chen E, Zhang A. A relative local variational principle for topological pressure. Sci. China Math., 2010, 53(6): 1491-1506

[11]

Przytycki F. Anosov endomorphisms. Studia Math., 1976, 58: 249-285

[12]

Qian M, Xie J S, Zhu S. Smooth Ergodic Theory for Endomorphisms, 2009, Berlin: Springer-Verlag

[13]

Rokhlin V A. On the fundamental ideas of measure theory. Amer. Math. Soc. Translation, 1962, 1: 107-150

[14]

Romagnoli P. A local variational principle for the topological entropy. Ergodic Theory Dynam. Systems, 2003, 23(5): 1601-1610

[15]

Ruelle D. Elememts of Differentiable Dynamics and Bifurcation Theory, 1988, Boston: Academic Press

[16]

Wang X, Wu W, Zhu Y. Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems. Discrete Contin. Dyn. Syst., 2020, 40(1): 81-105

[17]

Wang X, Wu W, Zhu Y. Unstable entropy and unstable pressure for partially hyperbolic endomorphisms. J. Math. Anal. Appl., 2020, 486(1): 123885 24 pages

[18]

Wang, X., Wu, W. and Zhu, Y., Unstable entropy and unstable pressure for random partially hyperbolic dynamical systems, Stoch. Dyn., 2021, 2150021, 31 pages.

[19]

Wu W. Local unstable entropies of partially hyperbolic diffeomorphisms. Ergodic Theory Dynam. Systems, 2020, 40(8): 2274-2304

[20]

Wu W, Zhu Y. On preimage entropy, folding entropy and stable entropy. Ergodic Theory Dynam. Systems, 2021, 41(4): 1217-1249

[21]

Young S L. ‘Many-to-one’ hyperbolic mappings and hyperbolic invariant sets. Acta Math. Sinica, 1986, 29: 420-427 (in Chinese)

[22]

Zhu S. Unstable manifolds for endomorphisms. Sci. China (Ser. A), 1998, 41: 147-157

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/