On Fridman Invariants and Generalized Squeezing Functions

Feng Rong , Shichao Yang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 161 -174.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 161 -174. DOI: 10.1007/s11401-022-0320-y
Article

On Fridman Invariants and Generalized Squeezing Functions

Author information +
History +
PDF

Abstract

In this paper, the authors introduce the notion of generalized squeezing function and study the basic properties of generalized squeezing functions and Fridman invariants. They also study the comparison of these two invariants, in terms of the so-called quotient invariant.

Keywords

Fridman invariant / Squeezing function / Quotient invariant

Cite this article

Download citation ▾
Feng Rong, Shichao Yang. On Fridman Invariants and Generalized Squeezing Functions. Chinese Annals of Mathematics, Series B, 2022, 43(2): 161-174 DOI:10.1007/s11401-022-0320-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Deng F, Guan Q, Zhang L. Some properties of squeezing functions on bounded domains. Pacific J. Math., 2012, 257: 319-341

[2]

Deng F, Guan Q, Zhang L. Properties of squeezing functions and global transformations of bounded domains. Trans. Amer. Math. Soc., 2016, 368: 2679-2696

[3]

Deng F, Wang Z, Zhang L, Zhou X. Holomorphic invariants of bounded domains. J. Geom. Anal., 2020, 30: 1204-1217

[4]

Deng F, Zhang X. Fridman’s invariant, squeezing functions, and exhausting domains. Acta Math. Sin. (Engl. Ser.), 2019, 35: 1723-1728

[5]

Fridman B L. Biholomorphic invariants of a hyperbolic manifold and some applications. Trans. Amer. Math. Soc., 1983, 276: 685-698

[6]

Jarnicki M, Pflug P. Invariant Distances and Metrics in Complex Analysis, 2013 2nd ed. Berlin: Walter de Gruyter GmbH

[7]

Kobayashi S. Hyperbolic Complex Spaces, 1998, Berlin: Springer Science Business Media

[8]

Lempert L. Holomorphic retracts and intrinsic metrics in convex domains. Anal. Math., 1982, 8: 257-261

[9]

Nikolov N, Verma K. On the squeezing function and Fridman invariants. J. Geom. Anal., 2020, 30: 1218-1225

[10]

Rong, F. and Yang, S., On the comparison of the Fridman invariant and the squeezing function, Complex Var. Elliptic Equ., https://doi.org/10.1080/17476933.2020.1851210.

[11]

Shi J. Basis of Several Complex Variables, 1996, Beijing: Higher Education Publishing House (in Chinese)

[12]

Wong B. Characterizations of the ball in ℂn by its automorphism group. Invent. Math., 1977, 41: 253-257

[13]

Zhang L. Intrinsic derivative, curvature estimates and squeezing function. Science China Math., 2017, 60: 1149-1162

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/