Zero Problems of the Bergman Kernel Function on the First Type of Cartan-Hartogs Domain

Xin Zhao , An Wang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 265 -280.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 265 -280. DOI: 10.1007/s11401-022-0316-7
Article

Zero Problems of the Bergman Kernel Function on the First Type of Cartan-Hartogs Domain

Author information +
History +
PDF

Abstract

The authors give the condition that the Bergman kernel function on the first type of Cartan-Hartogs domain exists zeros. If the Bergman kernel function of this type of domain has zeros, the zero set is composed of several path-connected branches, and there exists a continuous curve to connect any two points in the non-zero set.

Keywords

Cartan-Hartogs domain / Zeros of Bergman kernel function / Path connectivity

Cite this article

Download citation ▾
Xin Zhao, An Wang. Zero Problems of the Bergman Kernel Function on the First Type of Cartan-Hartogs Domain. Chinese Annals of Mathematics, Series B, 2022, 43(2): 265-280 DOI:10.1007/s11401-022-0316-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahn H, Park J D. The explicit forms and zeros of the Bergman kernel function for Hartogs type domains. J. Funct. Anal., 2012, 262: 3518-3547

[2]

Anh N V. The Lu Qi-Keng conjecture fails for strongly convex algebraic complete Reinhardt domains in ℂn(n ≥ 3). Proc. Amer. Math. Soc., 1999, 128(6): 1729-1732

[3]

Beberok T. Lu Qi-Keng’s problem for intersection of two complex ellipsoids. Complex Anal. Oper. Th., 2016, 10(5): 943-951

[4]

Bell D. Some properties of the Bergman kernel function. Composiion Math., 1969, 21: 329-330

[5]

Bergman S. Über die existenz von repräsentantenbereichen in theirie der Abbild durch paare von funktionen zweier komplexen veränderlichen. Ann. Math., 1930, 102: 430-446

[6]

Boas H P. Counterexample to the Lu Qi-Keng conjecture. Proc. Amer. Math. Soc., 1986, 97(2): 374-375

[7]

Boas H P. The Lu Qi-Keng conjecture fails generically. Proc. Amer. Math. Soc., 1996, 124(7): 2021-2027

[8]

Boas H P. Lu Qi-Keng’s problem. J. Korean Math. Soc., 2000, 37(2): 253-267

[9]

Boas H P, Fu S Q, Straube E J. The Bergman kernel function: Explicit formulas and zeroes. Proc. Amer. Math. Soc., 1999, 127(3): 805-811

[10]

Chen B Y. Weighted Bergman kernel: Asymptotic behavior, applications and comparison results. Studia Math., 2006, 174: 111-130

[11]

Demmad-Abdessameud F Z. Polynômes de Hua, noyau de Bergman des domaines de Cartan-Hartogs et problème de Lu Qikeng (Hua polynomial, Bergman kernel of Cartan-Hartogs domains and the Lu Qi-Keng problem). Rend. Semin. Mat. Univ. Politec. Torino., 2009, 67(1): 55-89

[12]

Edigarian A, Zwonek W. Geometry of the symmetrized polydisc. Arch. Math. (Basel), 2005, 84(4): 364-374

[13]

Engliš M. Zeros of the Bergman kernel of Hartogs domains. Comment. Math. Univ. Carolin., 2000, 41(2): 199-202

[14]

Greene, R. E. and Krantz, S. G., Stability properties of the Bergman kernel and curvature properties of bounded domains, Recent Developments in Several Complex Variables, Princetion Univ. Press, 1981, 179–198.

[15]

Lu Q K. On Kaehler manifolds with constant curvature. Chinese Math., 1966, 8: 283-298

[16]

Lu Q K. On Kaehler manifolds with constant curvature. Acta Math. Sinica, 1966, 16(2): 269-281 (English translation)

[17]

Lu Q K. The conjugate points of ℂP and the zeros of Bergman kernel. Acta. Math. Sci. Ser. B, Engl. Ed., 2009, 29(3): 480-492

[18]

Lu Q K. The Classical Manifolds and Classical Domains, 2011, Beijing: Science Press

[19]

Nikolov N, Zwonek W. The Bergman kernel of the symmetrized polydisc in higher dimensions has zeros. Arch. Math. (Basel), 2006, 87(5): 412-416

[20]

Pflug P, Youssfi E H. The Lu Qi-Keng conjecture fails for strongly convex algebraic domains. Arch. Math. (Basel), 1998, 71(3): 240-245

[21]

Rosenthal P. On the zeros of the Bergman function in doubly-connected domains. Proc. Amer. Math. Soc., 1969, 21: 33-35

[22]

Skwarczyński M. The distance in theory of pseudo-conformal transformations and the Lu Qi-Keng conjecture. Proc. Amer. Math. Soc., 1969, 22: 305-310

[23]

Suita N, Yamada A. On the Lu QiKeng conjecture. Proc. Amer. Math. Soc., 1976, 59(2): 222-224

[24]

Wang A, Liu Y L. Zeroes of the Bergman kernels on some new Hartogs domains. Chin. Quart. J. of Math., 2011, 26(3): 325-334

[25]

Wang A, Zhang L Y, Bai J X Zeros of Bergman kernels on some Hartogs domains. Sci. China Ser. A, 2009, 52: 2730-2742

[26]

Yin W P. The Bergman kernels on Cartan-Hartogs domains. Chinese Science Bulletin, 1999, 4: 1947-1951

[27]

Yin W P. The Bergman kernel function on the first type of Cartan-Hartogs domain. Science in China (Series A), 1999, 29(7): 607-615

[28]

Yin W P. Lu Qi-Keng conjecture and Hua domain. Sci. China Ser. A, 2008, 51(4): 803-818

[29]

Zhang L Y, Yin W P. Lu Qi-Keng’s problem on some complex ellipsoids. J. Math. Anal. Appl., 2009, 357: 364-370

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/