Almansi-Type Decomposition Theorem for Bi-k-regular Functions in the Clifford Algebra Cl 2n+2;0(ℝ)

Lixia Liu , Yue Liu , Yonghong Xie

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 253 -264.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 253 -264. DOI: 10.1007/s11401-022-0315-8
Article

Almansi-Type Decomposition Theorem for Bi-k-regular Functions in the Clifford Algebra Cl 2n+2;0(ℝ)

Author information +
History +
PDF

Abstract

Almansi-type decomposition theorem for bi-k-regular functions defined in a star-like domain Ω ⊆ ℝ n+1 × ℝ n+1 centered at the origin with values in the Clifford algebra Cl 2n+2,0(ℝ) is proved. As a corollary, Almansi-type decomposition theorem for biharmonic functions of degree k is given.

Keywords

Real Clifford analysis / Biregular functions / Bi-k-regular functions / Almansi-type decomposition theorem

Cite this article

Download citation ▾
Lixia Liu, Yue Liu, Yonghong Xie. Almansi-Type Decomposition Theorem for Bi-k-regular Functions in the Clifford Algebra Cl 2n+2;0(ℝ). Chinese Annals of Mathematics, Series B, 2022, 43(2): 253-264 DOI:10.1007/s11401-022-0315-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brackx F, Delanghe R, Sommen F. Clifford Analysis, 1982, Boston: Pitman Books Limits

[2]

Clifford W K. Applications of Grassman’s extensive algebra. American Journal of Mathematics, 1878, 1(4): 350-358

[3]

Eriksson S L. Hyperbolic extensions of integral formulas. Adv. Appl. Clifford Algebras, 2010, 20(3–4): 575-586

[4]

Eriksson S L, Orelma H. Hyperbolic function theory in the Clifford algebra Cl n+1,0. Adv. Appl. Clifford Algebras, 2009, 19(2): 283-301

[5]

Garcia A M, Garcia T M, Blaya R A, Reyes J B. Decomposition of inframonogenic functions with applications in elasticity theory. Math. Methods Appl. Sci., 2020, 43(4): 1915-1924

[6]

Huang S, Qiao Y Y, Wen G C. Real and Complex Clifford Analysis, 2006, Berlin: Springer-Verlag

[7]

Malonek H, Ren G B. Almansi-type theorems in Clifford analysis. Math. Methods Appl. Sci., 2002, 25(15–18): 1541-1552

[8]

Qiao Y Y. A boundary value problem for hypermonogenic functions in Clifford analysis. Science in China, 2005, 48A: 324-332

[9]

Ren G B, Kahler U. Almansi decompositions for polyharmonic, polyheat, and polywave functions. Studia Math., 2006, 172(1): 91-100

[10]

Sakakibara K. Method of fundamental solutions for biharmonic equation based on Almansi-type decomposition. App. Math., 2017, 62(4): 297-317

[11]

Xie Y H. Boundary properties of hypergenic-Cauchy type integrals in real Clifford analysis. Complex Var. Ell. Eq., 2014, 59(5): 599-615

[12]

Xie Y H, Zhang X F, Tang X M. Some properties of k-hypergenic functions in Clifford analysis. Complex Var. Ell. Eq., 2016, 61(12): 1614-1626

[13]

Yang H J, Qiao Y Y, Xie Y H. Cauchy integral formula for k-monogenic function with α-weight. Adv. Appl. Clifford Algebras, 2018, 28(2): 1-11

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/