Stability of the Rarefaction Wave for a Non-isentropic Navier-Stokes/Allen-Cahn System
Ting Luo
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 233 -252.
Stability of the Rarefaction Wave for a Non-isentropic Navier-Stokes/Allen-Cahn System
This paper is concerned with the large time behavior of solutions to the Cauchy problem for a one-dimensional compressible non-isentropic Navier-Stokes/Allen-Cahn system which is a combination of the classical Navier-Stokes system with an Allen-Cahn phase field description. Motivated by the relationship between Navier-Stokes/Allen-Cahn and Navier-Stokes, the author can prove that the solutions to the one dimensional compressible non-isentropic Navier-Stokes/Allen-Cahn system tend time-asymptotically to the rarefaction wave, where the strength of the rarefaction wave is not required to be small. The proof is mainly based on a basic energy method.
Navier-Stokes/Allen-Cahn system / Rarefaction wave / Stability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
/
| 〈 |
|
〉 |