Dual-holomorphic Functions and Problems of Lifts

Arif Salimov , Seher Aslanci , Fidan Jabrailzade

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 223 -232.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (2) : 223 -232. DOI: 10.1007/s11401-022-0313-x
Article

Dual-holomorphic Functions and Problems of Lifts

Author information +
History +
PDF

Abstract

The main purpose of this paper is to study the differential geometrical objects on tangent bundle corresponding to dual-holomorphic objects of dual-holomorphic manifold. As a result of this approach, the authors find a new class of lifts (deformed complete lifts) in the tangent bundle.

Keywords

Dual numbers / Tangent bundle / Complete lift / Dual-holomorphic functions / Anti-Kähler manifold

Cite this article

Download citation ▾
Arif Salimov, Seher Aslanci, Fidan Jabrailzade. Dual-holomorphic Functions and Problems of Lifts. Chinese Annals of Mathematics, Series B, 2022, 43(2): 223-232 DOI:10.1007/s11401-022-0313-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bejan C L, Druta-Romaniuc S-L. H-projectively Euclidean Kähler tangent bundles of natural diagonal type. Publ. Math. Debrecen, 2016, 89: 499-511

[2]

Druta-Romaniuc S-L. Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles. Czechoslovak Math. J., 2012, 62: 937-949

[3]

Kruchkovich G I. Hypercomplex structures on manifolds I. Trudy Sem. Vector. Tensor. An., Moscow Univ., 1972, 16: 174-201

[4]

Tachibana S. Analytic tensor and its generalization. Tohoku Math. J., 1960, 12: 208-221

[5]

Talantova N V, Shirokov A P. A remark on a certain metric in the tanget bundle. Izv. Vyss. Ucebn. Zaved. Matematika, 1975, 157(6): 143-146

[6]

Vishnevskii V V, Shirokov A P, Shurygin V V. Spaces Over Algebras, 1985, Kazan: Kazan Univ. Press

[7]

Yano K, Ako M. On certain operators associated with tensor fields. Kodai Math. Sem. Rep., 1968, 20: 414-436

[8]

Yano K, Ishihara S. Tangent and Cotangent Bundles: Differential Geometry, 1973, New York: Marcel Dekker

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/