PDF
Abstract
This paper is a continuation of the authors recent work [Beirão da Veiga, H. and Yang, J., On mixed pressure-velocity regularity criteria to the Navier-Stokes equations in Lorentz spaces, Chin. Ann. Math., 42(1), 2021, 1–16], in which mixed pressure-velocity criteria in Lorentz spaces for Leray-Hopf weak solutions of the three-dimensional Navier-Stokes equations, in the whole space ℝ3 and in the periodic torus ${\mathbb{T}^3}$, are established. The purpose of the present work is to extend the result of mentioned above to smooth, bounded domains, under the non-slip boundary condition. Let π denote the fluid pressure and v the fluid velocity. It is shown that if ${\pi \over {{{\left( {1 + \left| v \right|} \right)}^\theta }}} \in {L^p}\left( {0,T;{L^{q,\infty }}\left( \Omega \right)} \right)$;, where 0 ≤ θ ≤ 1, and ${2 \over p} + {3 \over q} = 2 - \theta $ with p ≥ 2, then v is regular on Ω × (0, T].
Keywords
Navier-Stokes equations
/
Pressure-speed links
/
Regularity criteria
/
Lorentz spaces
/
Boundary value problem
Cite this article
Download citation ▾
Hugo Beirão Da Veiga, Jiaqi Yang.
On Mixed Pressure-Velocity Regularity Criteria to the Navier-stokes Equations in Lorentz Spaces, Part II: The Non-slip Boundary Value Problem.
Chinese Annals of Mathematics, Series B, 2022, 43(1): 51-58 DOI:10.1007/s11401-022-0303-z
| [1] |
Beirão da Veiga H. Existence and asymptotic behaviour for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J., 1987, 36: 149-166
|
| [2] |
Beirão da Veiga H. Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method; Part I. Diff. Int. Eq., 1997, 10: 1149-1156
|
| [3] |
Beirão da Veiga H. Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method, Part II, Équations aux Dérivées Partielles et Applications, Gauthier-Villars, Éd. Sci. Méd., 1998, Paris: Elsevier 127-138
|
| [4] |
Beirão da Veiga H. A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech., 2000, 2: 99-106
|
| [5] |
Beirão da Veiga H. On the Truth, and limits, of a full equivalence p ≅ v 2 in the regularity theory of the Navier-Stokes equations: A point of view. J. Math. Fluid Mech., 2018, 20: 889-898
|
| [6] |
Beirão da Veiga H, Yang J. On mixed pressure-velocity regularity criteria to the Navier-Stokes equations in Lorentz spaces. Chin. Ann. Math., 2021, 42(1): 1-16
|
| [7] |
Bergh J, Löfström J. Interpolation Spaces, 1976, Berlin: Springer-Verlag
|
| [8] |
Berselli L C, Galdi G P. Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations. Proc. Am. Math. Soc., 2002, 130: 3585-3595
|
| [9] |
Berselli L C, Manfrin R. On a theorem of Sohr for the Navier-Stokes equations. J. Evol. Eq., 2004, 4: 193-211
|
| [10] |
Carrillo J A, Ferreira L C F. Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math., 2007, 151: 111-142
|
| [11] |
Escauriaza L, Seregin G, Sverak V. L 3,∞-solutions of the Navier-Stokes equations and backward uniqueness. Russian Mathematical Surveys, 2003, 58: 211-250
|
| [12] |
Galdi G P, Maremonti P. Sulla regolarità delle soluzioni deboli al sistema di Navier-Stokes in domini arbitrari. Ann. Univ. Ferrara., 1988, 34: 59-73
|
| [13] |
Giga Y. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Diff. Eq., 1986, 61: 186-212
|
| [14] |
Giga Y, Sohr H. Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal., 1991, 102: 72-94
|
| [15] |
Grafakos L. Classical Fourier Analysis, 2008 2nd edn Berlin: Springer-Verlag
|
| [16] |
Ji X, Wang Y, Wei W. New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J. Math. Fluid Mech., 2020, 22: 1-8
|
| [17] |
Ladyžhenskaya O A. Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 1967, 5: 169-185
|
| [18] |
Ladyzhenskaya O A. The mathematical theory of viscous incompressible flow, 1969, New York-London-Paris: Gordon and Breach, Science Publishers 224 pp
|
| [19] |
Malý, J., Advanced theory of differentiation-Lorentz spaces, March 2003, http://www.karlin.mff.cuni.cz/maly/lorentz.pdf.
|
| [20] |
O’Neil R. Convolution operaters and L p,q spaces. Duke Math. J., 1963, 30: 129-142
|
| [21] |
Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl., 1959, 48: 173-182
|
| [22] |
Seregin G. On smoothness of L 3,∞-solutions to the Navier-Stokes equations up to the boundary. Math. Ann., 2005, 332: 219-238
|
| [23] |
Serrin J. Langer The initial value problem for the Navier-Stokes equations. Nonlinear Problems, 1963, Madison, Wisconsin: Univ. Wisconsin Press 69-98
|
| [24] |
Sohr H. A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ., 2001, 1: 441-467
|
| [25] |
Solonnikov V A. Estimates for solutions of a non-stationary linearized system of Navier-Stokes equations. Amer. Math. Soc. Transl., 1968, 75: 1-116
|
| [26] |
Suzuki T. Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations. J. Math. Fluid Mech., 2012, 14: 653-660
|
| [27] |
Suzuki T. A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces. Nonlinear Anal. Theory Methods Appl., 2012, 75: 3849-3853
|
| [28] |
Wang Y, Wei W, Yu H. ε-Regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces. J. Evol. Equ., 2021, 21: 1627-1650
|
| [29] |
Zhou Y. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain. Math. Ann., 2004, 328: 173-192
|