Orbifold Stiefel-Whitney Classes of Real Orbifold Vector Bundles over Right-Angled Coxeter Complexes

Lisu Wu

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (1) : 33 -50.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (1) : 33 -50. DOI: 10.1007/s11401-022-0302-0
Article

Orbifold Stiefel-Whitney Classes of Real Orbifold Vector Bundles over Right-Angled Coxeter Complexes

Author information +
History +
PDF

Abstract

The author gives a definition of orbifold Stiefel-Whitney classes of real orbifold vector bundles over special q-CW complexes (i.e., right-angled Coxeter complexes). Similarly to ordinary Stiefel-Whitney classes, orbifold Stiefel-Whitney classes here also satisfy the associated axiomatic properties.

Keywords

Right-Angled Coxeter orbifold / Stiefel-Whitney class / Group representation

Cite this article

Download citation ▾
Lisu Wu. Orbifold Stiefel-Whitney Classes of Real Orbifold Vector Bundles over Right-Angled Coxeter Complexes. Chinese Annals of Mathematics, Series B, 2022, 43(1): 33-50 DOI:10.1007/s11401-022-0302-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adem A, Leida J, Ruan Y. Orbifolds and Stringy Topology, 2007, New York: Cambridge

[2]

Buchstaber V M, Panov T E. Toric topology, 2015, Providence, RI: American Mathematical Society

[3]

Chen W. On a notion of maps between orbifolds. I. Function spaces. Commun. Contemp. Math., 2006, 8(5): 569-620

[4]

Chen W. On a notion of maps between orbifolds. II. Homotopy and CW-complex. Commun. Contemp. Math., 2006, 8(6): 763-821

[5]

Chen W, Ruan Y. A new cohomology theory of orbifold. Comm. Math. Phys., 2004, 248(1): 1-31

[6]

Davis, M. W., The Geometry and Topology of Coxeter Groups, London Mathematical Society Monographs Series 32, Princeton University. Press 2008.

[7]

Davis M W, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math., 1991, 62(2): 417-451

[8]

Geck M, Pfeiffer G. Characters of Finite Coxeter Groups and Iwahori-Hecke algebras, 2000, New York: The Clarendon Press, Oxford University Press

[9]

Grove L C, Benson C T. Finite Reflection Groups, 1985 second edition New York: Springer-Verlag

[10]

Gunarwardena J, Kahn B, Thomas C. Stiefel-Whitney classes of real representations of finite groups. J. Algebra, 1989, 126(2): 327-347

[11]

Lü, Z., Ma, J. and Sun, Y., Elementary symmetric polynomials in Stanley-Reisner face ring, ArXiv:1602.08837, 2016.

[12]

Lü, Z., Wu, L. and Yu, L., An integral homology theory of Coxeter orbifolds, 2021. manuscript.

[13]

Milnor J W, Stasheff J D. Characteristic Classes, 1974, Princeton: Princeton University Press University of Tokyo Press, Tokyo

[14]

Poddar M, Sarkar S. On quasitoric orbifolds. Osaka J. Math., 2010, 47(4): 1055-1076

[15]

Satake I. On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. U.S.A, 1956, 42: 359-363

[16]

Satake I. The Gauss-Bonnet Theorem for V-manifolds. Journal of the Mathematical Society of Japan, 1957, 9(4): 464-492

[17]

Seaton C. Characteristic classes of bad orbifold vector bundles. J. Geom. Phys., 2007, 57(11): 2365-2371

[18]

Thomas C B. Characteristic Classes and the Cohomology of Finite Groups, 1986, Cambridge: Cambridge University Press

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/