Unique Continuation on Quadratic Curves for Harmonic Functions

Yufei Ke , Yu Chen

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (1) : 17 -32.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (1) : 17 -32. DOI: 10.1007/s11401-022-0301-1
Article

Unique Continuation on Quadratic Curves for Harmonic Functions

Author information +
History +
PDF

Abstract

The unique continuation on quadratic curves for harmonic functions is discussed in this paper. By using complex extension method, the conditional stability of unique continuation along quadratic curves for harmonic functions is illustrated. The numerical algorithm is provided based on collocation method and Tikhonov regularization. The stability estimates on parabolic and hyperbolic curves for harmonic functions are demonstrated by numerical examples respectively.

Keywords

Unique continuation / Quadratic curves / Harmonic function

Cite this article

Download citation ▾
Yufei Ke, Yu Chen. Unique Continuation on Quadratic Curves for Harmonic Functions. Chinese Annals of Mathematics, Series B, 2022, 43(1): 17-32 DOI:10.1007/s11401-022-0301-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wolff T H. Recent work on sharp estimates in second-order elliptic unique continuation problems. J. Geom. Anal., 1993, 3: 621-650

[2]

Cheng J, Yamamoto M. Unique continuation on a line for harmonic functions. Inverse Probl., 1998, 14: 869-882

[3]

Lu S, Xu B, Xu X. Unique continuation on a line for the Helmholtz equation. Appl. Anal., 2012, 9: 1761-1771

[4]

Bukhgeim A L, Cheng J, Yamamoto M. Stability for an inverse boundary problem of determining a part of a boundary. Inverse Problems, 1999, 15(4): 1021

[5]

Isakov V. New stability results for soft obstacles in inverse scattering. Inverse Probl., 1993, 9: 535-543

[6]

Cheng J, Liu Y, Wang Y, Yamamoto M. Unique continuation property with partial information for two-dimensional anisotropic elasticity systems. Acta Math. Appl. Sin., 2020, 36: 3-17

[7]

Cheng J, Yamamoto M. One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Probl., 2000, 16(4): 31-38

[8]

Russell R D, Shampine L F. A collocation method for boundary value problem. Numer. Math., 1972, 19: 1-28

[9]

Hsiao G C, Wendland W L. A finite element method for some integral equations of the first kind. J. Math. Anal. Appl., 1977, 58(3): 449-481

[10]

Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order, 1983 2nd ed. Berlin: Springer-Verlag

[11]

Friedman A, Vogelius M. Determining cracks by boundary measurements. Indiana Univ. Math. J., 1989, 38(3): 527-556

[12]

Kellogg O D. Foundations of Potential Theory, 1953, New York: Dover Publ.

[13]

Flatto L, Newman D, Shapiro H. The level curves of harmonic functions. T. Am. Math. Soc., 1966, 123(2): 425-436

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/