Ricci-Bourguignon Flow on Manifolds with Boundary

Hongbing Qiu , Anqiang Zhu

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (6) : 953 -968.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (6) : 953 -968. DOI: 10.1007/s11401-021-0299-9
Article

Ricci-Bourguignon Flow on Manifolds with Boundary

Author information +
History +
PDF

Abstract

The authors consider the short time existence for Ricci-Bourguignon flow on manifolds with boundary. If the initial metric has constant mean curvature and satisfies some compatibility conditions, they show the short time existence of the Ricci-Bourguignon flow with constant mean curvature on the boundary.

Keywords

Ricci-Bourguignon flow / Boundary value problem

Cite this article

Download citation ▾
Hongbing Qiu, Anqiang Zhu. Ricci-Bourguignon Flow on Manifolds with Boundary. Chinese Annals of Mathematics, Series B, 2021, 42(6): 953-968 DOI:10.1007/s11401-021-0299-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alinhac S, Gérard P. Pseudo-differential Operators and the Nash-Moser Theorem, 2007, Providence, RI: Amer. Math. Soc. viii+168 pp.

[2]

Bourguignon J. Ricci Curvature and Einstein metrics, Global Differential Geometry and Global Analysis, 1981, Berlin: Springer-Verlag 42-63

[3]

Catino G, Cremaschi L, Djadli Z The Ricci Bourguignon flow. Pacific J. Math., 2017, 287: 337-370

[4]

Catino G, Mazzieri L. Gradient Einstein solitons. Nonlinear Anal., 2016, 132: 66-94

[5]

Catino G, Mazzieri L, Mongodi S. Rigidity of gradient Einstein shrinkers. Comm. Cont. Math., 2015, 17(6): 1550046 18 pp.

[6]

Fischer A E. An introduction to conformal Ricci flow. Classical and Quantum Gravity, 2014, 21(3): 171-238

[7]

Hamilton R S. Harmonic Maps of Manifolds with Boundary, 1975, Berlin: Springer-Verlag

[8]

Hamilton R S. The inverse function theorem of Nash and Moser. Bulletion of the American Mathematical Society, 1982, 7: 65-222

[9]

Gianniotis P. The Ricci flow on manifolds with boundary. J. Differential Geom., 2016, 104: 291-324

[10]

Ladyzenskaja O A, Solonnikov V A, Ural’ceva N N. Linear and Quasilinear Equations of Parabolic type, 1986, Providence, RI: Amer. Math. Soc.

[11]

Lu P, Qing J, Zheng Y. A note on conformal Ricci flow. Pacific J. Math., 2014, 268(2): 413-434

[12]

Pulemotov A. Quasilinear parabolic equations and the Ricci flow on manifolds with boundary. J. Reine Angew. Math., 2013, 683: 97-118

[13]

Shen Y. On Ricci deformation of a Riemannian metric on manifold with boundary. Pacific J. Math., 1996, 173: 203-221

[14]

Solonnikov V A. On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Mat. Inst. Steklov, 1965, 83: 3-163

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/