On the Refined Esitmates of All Homogeneous Expansions for a Subclass of Biholomorphic Starlike Mappings in Several Complex Variables

Xiaosong Liu , Taishun Liu

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (6) : 909 -920.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (6) : 909 -920. DOI: 10.1007/s11401-021-0297-y
Article

On the Refined Esitmates of All Homogeneous Expansions for a Subclass of Biholomorphic Starlike Mappings in Several Complex Variables

Author information +
History +
PDF

Abstract

The refined estimates of all homogeneous expansions for a subclass of biholomorphic starlike mappings are mainly established on the unit ball in complex Banach spaces or the unit polydisk in ℂ n with a unified method. Especially the results are sharp if the above mappings are further k-fold symmetric starlike mappings or k-fold symmetric starlike mappings of order α. The obtained results unify and generalize the corresponding results in some prior literatures.

Keywords

Refined estimates of all homogeneous expansions / Starlike mapping / S-tarlike mapping of order α / k-fold symmetric / Unified method

Cite this article

Download citation ▾
Xiaosong Liu, Taishun Liu. On the Refined Esitmates of All Homogeneous Expansions for a Subclass of Biholomorphic Starlike Mappings in Several Complex Variables. Chinese Annals of Mathematics, Series B, 2021, 42(6): 909-920 DOI:10.1007/s11401-021-0297-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MacGregor T H. Coefficient estimates for starlike mappings. Michigan Math. J., 1963, 10(3): 277-281

[2]

Boyd A V. Coefficient estimates for starlike functions of order α. Proc. Amer. Math. Soc., 1966, 17(5): 1016-1018

[3]

Gong S. The Bieberbach Conjecture, 1999, Providence, RI: International Press, American Mathematical Society

[4]

Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin. Ann. Math. Ser. B, 2008, 29(4): 353-368

[5]

Liu X S, Liu T S. The sharp estimate of the third homogeneous expansion for a class of starlike mappings of order α on the unit polydisk in ℂn. Acta Math. Sci., 2012, 32B(2): 752-764

[6]

Liu X S. On the quasi-convex mappings on the unit polydisk in ℂn. J. Math. Anal. Appl., 2007, 335(1): 43-55

[7]

Liu X S, Liu T S. The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in ℂn. Chin. Ann. Math. Ser. B, 2011, 32(2): 241-252

[8]

Liu X S, Liu T S, Xu Q H. A proof of a weak version of the Bieberbach conjecture in several complex variables. Sci. China Math., 2015, 58(12): 2531-2540

[9]

Xu Q H, Liu T S. On coefficient estimates for a class of holomorphic mappings. Sci. China Math., 2009, 52(4): 677-686

[10]

Liu X S, Liu T S. The estimates of all homogeneous expansions for a subclass of biholomorphic mappings which have parametric representation in several complex variables. Acta Math. Sin. (Engl. Ser.), 2017, 33(2): 287-300

[11]

Liu T S, Liu X S. A refinement about estimation of expansion coefficients for normalized biholomorphic mappings. Sci. China Math., 2005, 48(7): 865-879

[12]

Hamada H, Honda T, Kohr G. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J. Math. Anal. Appl., 2006, 317(1): 302-319

[13]

Graham I, Hamada H, Honda T Growth, distortion and coefficient bounds for Carathéodory families in ℂn and complex Banach spaces. J. Math. Anal. Appl., 2014, 416(1): 449-469

[14]

Liu X S, Liu T S. The refined estimates of all homogeneous expansions for a subclass of starlike mappings of order α in several complex variables. Acta Math. Sin., 2018, 61(6): 1029-1036 (in Chinese)

[15]

Hamada H, Kohr G, Liczberski P. Starlike mappings of order α on the unit ball in complex Banach spaces. Glas. Mat. Ser. III, 2001, 36(1): 39-48

[16]

Graham, I. and Kohr, G., Geometric Function Theory in One and Higher Dimensions, Monographs and Textbooks in Pure and Applied Mathematics, 255, Marcel Dekker, New York, Inc., 2003.

[17]

Honda T. The growth theorem for k-fold symmetric convex mappings. Bull. London Math. Soc., 2002, 34(6): 717-724

[18]

Lin Y Y, Hong Y. Some properties of holomorphic maps in Banach spaces. Acta Math. Sin., 1995, 38(2): 234-241 (in Chinese)

AI Summary AI Mindmap
PDF

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/