On the Asymptotic Stability of Wave Equations Coupled by Velocities of Anti-symmetric Type

Yan Cui , Zhiqiang Wang

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (6) : 813 -832.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (6) : 813 -832. DOI: 10.1007/s11401-021-0293-8
Article

On the Asymptotic Stability of Wave Equations Coupled by Velocities of Anti-symmetric Type

Author information +
History +
PDF

Abstract

In this paper, the authors study the asymptotic stability of two wave equations coupled by velocities of anti-symmetric type via only one damping. They adopt the frequency domain method to prove that the system with smooth initial data is logarithmically stable, provided that the coupling domain and the damping domain intersect each other. Moreover, they show, by an example, that this geometric assumption of the intersection is necessary for 1-D case.

Keywords

Wave equations / Coupled by velocities / Logarithmic stability

Cite this article

Download citation ▾
Yan Cui, Zhiqiang Wang. On the Asymptotic Stability of Wave Equations Coupled by Velocities of Anti-symmetric Type. Chinese Annals of Mathematics, Series B, 2021, 42(6): 813-832 DOI:10.1007/s11401-021-0293-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alabau-Boussouira F. Indirect boundary stabilization of weakly coupled hyperbolic systems. SIAM J. Control Optim., 2002, 41(2): 511-541

[2]

Alabau-Boussouira F, Léautaud M. Indirect stabilization of locally coupled wave-type systems. ESAIM Control Optim. Calc. Var., 2012, 18(2): 548-582

[3]

Alabau-Boussouira F, Wang Z Q, Yu L X. A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities. ESAIM Control Optim. Calc. Var., 2017, 23(2): 721-749

[4]

Anantharaman N, Léautaud M. Sharp polynomial decay rates for the damped wave equation on the torus. Anal. PDE, 2014, 7(1): 159-214 With an appendix by Stéphane Nonnenmacher

[5]

Bardos C, Lebeau G, Rauch J. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 1992, 30(5): 1024-1065

[6]

Burq N. Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math., 1998, 180(1): 1-29

[7]

Burq N, Hitrik M. Energy decay for damped wave equations on partially rectangular domains. Math. Res. Lett., 2007, 14(1): 35-47

[8]

Cui Y, Wang Z Q. Asymptotic stability of wave equations coupled by velocities. Math. Control Relat. Fields, 2016, 6(3): 429-446

[9]

Fu X Y. Logarithmic decay of hyperbolic equations with arbitrary small boundary damping. Communications in Partial Differential Equations, 2009, 34(9): 957-975

[10]

Fu X Y. Sharp decay rates for the weakly coupled hyperbolic system with one internal damping. SIAM J. Control Optim., 2012, 50(3): 1643-1660

[11]

Fu X Y, Lv̈ Q, Zhang X. Carleman Estimates for Second Order Partial Differential Operators and Applications, a Unified Approach, Springer Briefs in Mathematics, 2019, Cham: Springer

[12]

Fursikov A V, Imanuvilov O Yu. Controllability of evolution equations, 1996, Seoul: Seoul National University, Research Institute of Mathematics, Global Analysis Research Center

[13]

Gerbi, S., Kassem, C., Mortada, A. and Wehbe, A., Exact controllability and stabilization of locally coupled wave equations, arXiv:2003.14001, 2020.

[14]

Jin L. Damped wave equations on compact hyperbolic surfaces. Commun. Math. Phys, 2020, 373(3): 771-794

[15]

Kassem C, Mortada A, Toufayli L, Wehbe A. Local indirect stabilization of n-d system of two coupled wave equations under geometric conditions. Comptes Rendus Mathematique, 2019, 357(6): 494-572

[16]

Klein G. Best exponential decay rate of energy for the vectorial damped wave equation. SIAM J. Control Optim., 2017, 56: 3432-3453

[17]

Léautaud M, Lerner N. Sharp polynomial energy decay for locally undamped waves. Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications, 2016 13. Ed. Palaiseau: Éc. Polytech. Année 2014–2015, pages Exp. No. XXI

[18]

Lebeau G. Équation des ondes amorties. Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), 1996, Dordrecht: Kluwer Acad. Publ. 73-109

[19]

Liu K S. Locally distributed control and damping for the conservative systems. SIAM J. Control Optim., 1997, 35(5): 1574-1590

[20]

Liu Z Y, Rao B P. Frequency domain approach for the polynomial stability of a system of partially damped wave equations. J. Math. Anal. Appl., 2007, 335(2): 860-881

[21]

Pazy A. Semigroups of linear operators and applications to partial differential equations, 1983, New York: Springer-Verlag

[22]

Phung K-D, Zhang X. Time reversal focusing of the initial state for kirchoff plate. SIAM J. Appl. Math., 2008, 68(6): 1535-1556

[23]

Phung K-D. Polynomial decay rate for the dissipative wave equation. J. Differential Equations, 2007, 240(1): 92-124

[24]

Rauch J, Taylor M. Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J., 1974, 24: 79-86

[25]

Reed M, Simon B. Methods of Modern Mathematical Physics. I, Functional Analysis, 1972, New York-London: Academic Press

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/