LCD Codes and Self-orthogonal Codes in Finite Dihedral Group Algebras

Yanyan Gao , Qin Yue , Yansheng Wu

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 791 -800.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 791 -800. DOI: 10.1007/s11401-021-0291-4
Article

LCD Codes and Self-orthogonal Codes in Finite Dihedral Group Algebras

Author information +
History +
PDF

Abstract

Let ${\mathbb{F}_q}$ be a finite field with order q and D 2n be the dihedral group with 2n elements, and gcd(q, 2n) = 1. In this article, the authors give precise descriptions and enumerations of linear complementary dual (LCD) codes and self-orthogonal codes in the finite dihedral group algebras ${\mathbb{F}_q}[{D_{2n}}]$. Some numerical examples are also presented to illustrate the main results.

Keywords

Group algebra / Dihedral group / LCD codes / Self-orthogonal codes

Cite this article

Download citation ▾
Yanyan Gao, Qin Yue, Yansheng Wu. LCD Codes and Self-orthogonal Codes in Finite Dihedral Group Algebras. Chinese Annals of Mathematics, Series B, 2021, 42(5): 791-800 DOI:10.1007/s11401-021-0291-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boripan A, Jitman S, Udomkavanich P. Characterization and enumeration of complementary dual abelian codes. J. Appl. Math. Comput., 2018, 58(1–2): 527-544

[2]

Brochero Martínez F E. Structure of finite dihedral group algebra. Finite Fields Appl., 2015, 35: 204-214

[3]

Brochero Martínez F E, Giraldo Vergara C R. Explicit idempotents of finite group algebras. Finite Fields Appl., 2014, 28: 123-131

[4]

Carlet C, Mesnager S, Tang C, Qi Y. Euclidean and Hermitian LCD MDS codes. Des. Codes. Cryptogr., 2018, 86(11): 2605-2618

[5]

Carlet C, Mesnager S, Tang C Linear codes over ${\mathbb{F}_q}$ are equivalent to LCD codes for q > 3. IEEE Trans. Inf. Theory, 2018, 64(4): 3010-3017

[6]

Choosuwan, P., Jitman, S. and Udomkavanich, P., Self-abelian codes in some nonprincipal ideal group algebras, Math. Probl. Eng., Article ID: 9020173, 12 pages, 2016.

[7]

Cao Y, Cao Y, Fu F. Concatenated structure of left dihedral codes. Finite Fields Appl., 2016, 38: 93-115

[8]

Cao Y, Cao Y, Fu F, Wang S. Left dihedral codes over Galois ring GR(p 2, m). Discrete Math., 2018, 341: 1816-1834

[9]

Cruz J, Willems W. On group codes with complementary duals. Des. Codes. Cryptogr., 2018, 86: 2065-2073

[10]

Ferraz R A, Polcino Milies C. Idempotents in group algebras and minimal abelian codes. Finite Fields Appl., 2007, 13: 382-393

[11]

Griesmer J H. A bound for error correcting codes. IBM J. Res. Der., 1960, 3(5): 532-542

[12]

Jitman S, Ling S, Liu H, Xie X. Abelian codes in principal ideal group algebras. IEEE Trans. Inf. Theory, 2013, 59: 3046-3057

[13]

Jitman S, Ling S, Solé P. Hermitian self-dual abelian codes. IEEE Trans. Inf. Theory, 2014, 60: 1496-1507

[14]

Massey J L. Reversible codes. Inf. Control, 1964, 7(3): 369-380

[15]

Mesnager S, Tang C, Qi Y. Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory, 2018, 64: 2390-2397

[16]

Passman D S. The Algebraic Structure of Group Rings, 1977, New York: Wiley

[17]

Polcino Milies C, Diniz de Melo F. On cyclic and abelian codes. IEEE Trans. Inf. Theory, 2013, 59: 7314-7319

[18]

Polcino Milies C, Sehgal S K. An Introduction to Group Rings, 2002, Dordrecht, The Notherlands: Kluwer

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/