On Descriptions of Products of Simplices

Li Yu , Mikiya Masuda

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 777 -790.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 777 -790. DOI: 10.1007/s11401-021-0290-5
Article

On Descriptions of Products of Simplices

Author information +
History +
PDF

Abstract

The authors give several new criteria to judge whether a simple convex polytope in a Euclidean space is combinatorially equivalent to a product of simplices. These criteria are mixtures of combinatorial, geometrical and topological conditions that are inspired by the ideas from toric topology In addition, they give a shorter proof of a well known criterion on this subject.

Keywords

Convex polytope / Product of simplices / Moment-angle complex

Cite this article

Download citation ▾
Li Yu, Mikiya Masuda. On Descriptions of Products of Simplices. Chinese Annals of Mathematics, Series B, 2021, 42(5): 777-790 DOI:10.1007/s11401-021-0290-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ardila F, Billey S. Flag arrangements and triangulations of products of simplices. Adv. Math., 2007, 214(2): 495-524

[2]

Bahri A, Bendersky M, Cohen F, Gitler S. Operations on polyhedral products and a new topological construction of infinite families of toric manifolds. Homology Homotopy Appl., 2015, 17: 137-160

[3]

Buchstaber V M, Panov T E. Torus actions and their applications in topology and combinatorics, 2002, Providence, RI: Amer. Math. Soc.

[4]

Buchstaber V M, Panov T E. Toric Topology, 2015, Providence, RI: Amer. Math. Soc.

[5]

Burago D, Burago Y, Ivanov S. A course in metric geometry, Graduate Studies in Mathematics, 2001, Providence, RI: Amer. Math. Soc. 33

[6]

Choi S, Kim J S. Combinatorial rigidity of 3-dimensional simplicial polytopes. Int. Math. Res. Not., 2011, 2011(8): 1935-1951

[7]

Choi S, Masuda M, Suh D Y. Quasitoric manifolds over a product of simplices. Osaka J. Math., 2010, 47(1): 109-129

[8]

Choi S, Masuda M, Suh D Y. Rigidity problems in toric topology: a survey. Proc. Steklov Inst. Math., 2011, 275: 177-190

[9]

Choi S, Panov T, Suh D Y. Toric cohomological rigidity of simple convex polytopes. J. Lond. Math. Soc., 2010, 82(2): 343-360

[10]

Coxeter H S M. Discrete groups generated by reflections. Annals of Math., 1934, 35(3): 588-621

[11]

Davis M W, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J., 1991, 62(2): 417-451

[12]

de Loera J A. Nonregular triangulations of products of simplices. Discrete Comput. Geom., 1996, 15(3): 253-264

[13]

Francisco S. The Cayley trick and triangulations of products of simplices, Integer points in polyhedrageometry, number theory, algebra, optimization, 2005, Providence, RI: Amer. Math. Soc. 151-177

[14]

Hattori A, Masuda M. Theory of multi-fans. Osaka J. Math., 2003, 40(1): 1-68

[15]

Kobayashi S. Transformation Groups in Differential Geometry, 1972, Berlin: Springer-Verlag

[16]

Kuroki S, Masuda M, Yu L. Small covers, infra-solvmanifolds and curvature. Forum Math., 2015, 27(5): 2981-3004

[17]

Ustinovsky Y M. Doubling operation for polytopes and torus actions. Russian Math. Surveys, 2009, 64(5): 181-182

[18]

Ustinovsky Y M. Toral rank conjecture for moment-angle complexes. Math. Notes, 2011, 90(2): 279-283

[19]

Wiemeler M. Torus manifolds and non-negative curvature. J. Lond. Math. Soc., II. Ser, 2015, 91(3): 667-692

[20]

Ziegler G M. Lectures on polytopes, Graduate Texts in Mathematics, 1998, New York: Springer-Verlag 152

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/