2 2-action,Fixed data,Characteristic number,Simultaneous bordism,Stiefel-Whitney class" /> 2 2-action" /> 2 2-action,Fixed data,Characteristic number,Simultaneous bordism,Stiefel-Whitney class" />

Two Commuting Involutions Fixing RP 1(2m + 1) ∪ RP 2(2m + 1)

Suqian Zhao , Yanying Wang , Jingyan Li

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 737 -752.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 737 -752. DOI: 10.1007/s11401-021-0288-z
Article

Two Commuting Involutions Fixing RP 1(2m + 1) ∪ RP 2(2m + 1)

Author information +
History +
PDF

Abstract

Let Z 2 denote a cyclic group of 2 order and Z 2 2 = Z 2 × Z 2 the direct product of groups. Suppose that (M, Φ) is a closed and smooth manifold M with a smooth Z 2 2-action whose fixed point set is the disjoint union of two real projective spaces with the same dimension. In this paper, the authors give a sufficient condition on the fixed data of the action for (M, Φ) bounding equivariantly.

Keywords

2 2-action')">Z 2 2-action / Fixed data / Characteristic number / Simultaneous bordism / Stiefel-Whitney class

Cite this article

Download citation ▾
Suqian Zhao, Yanying Wang, Jingyan Li. Two Commuting Involutions Fixing RP 1(2m + 1) ∪ RP 2(2m + 1). Chinese Annals of Mathematics, Series B, 2021, 42(5): 737-752 DOI:10.1007/s11401-021-0288-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Conner P E. The bordism class of a bundle space. Michigan Math. J., 1967, 14: 289-303

[2]

Conner P E. Differentiable Periodic Maps, 1979, Berlin: Springer-Verlag

[3]

Hou D, Torrence B. Involutions fixing the disjoint union of odd-dimensional projective spaces. Canad. Math. Bull., 1994, 37: 66-74

[4]

Kosniowski C, Stong R E. Involutions and characteristic numbers. Topology, 1978, 17: 309-330

[5]

Kosniowski C, Stong R E. (Z 2)k-actions and characteristic numbers. Indiana Univ. Math. J., 1979, 28: 725-743

[6]

Li J Y, Wang Y Y. Characteristic classes of vector bundles over RP(h) × HP(k). Topology Appl., 2007, 154: 1778-1793

[7]

Li J Y, Wang Y Y. Involutions fixing RP(2m + 1) × CP(k). Chin. Ann. Math., 2008, 29A: 485-498

[8]

Z. Involutions fixing RP oddP(h, i), I. Transactions Amer. Math. Soc., 2002, 354: 4539-4570

[9]

Z. Involutions fixing RP oddP(h, i), II. Transactions Amer. Math. Soc., 2004, 356: 1291-1314

[10]

Meng Y Y, Wang Y Y. Involutions with fixed point set RP(2m) ∐ P(2m, 2n + l). Acta Mathematica Scientia B, 2014, 34: 331-342

[11]

Pergher P L Q. The union of a connected manifold and a point as fixed set of commuting involutions. Topology Appl., 1996, 69: 71-81

[12]

Pergher P L Q. Bordism of two commuting involutions. Proc. Amer. Math. Soc., 1998, 126: 2141-2149

[13]

Pergher P L Q. (Z 2)k-actions whose fixed data has a section. Trans. Amer. Math. Soc., 2001, 353: 175-189

[14]

Pergher P L Q, Figueira F G. Two commuting involutions fixing F nF n−1. Geometriae Dedicata, 2006, 117: 181-193

[15]

Pergher P L Q, Ramos A, Oliveira R. Z k 2-actions fixing RP 2RP even. Algebr. Geom. Topol., 2007, 7: 29-45

[16]

Pergher P L Q, Ramos A. Z 2 k-actions fixing ${K_d}{P^{{2^s}}} \cup {K_d}{P^{{\rm{even}}}}$. Topology Appl., 2009, 156: 629-642

[17]

Pergher P L Q, Stong R E. Involutions fixing (point)∪F n. Transformation Groups, 2001, 6: 78-85

[18]

Royster D C. Involutions fixing the disjoint union of two projective spaces. Indiana Univ. Math. J., 1980, 29: 267-276

[19]

Stong R E. Equivariant bordism and (Z 2)k-actions. Duke Math. J., 1970, 37: 779-785

[20]

Stong R E. Involutions fixing products of circles. Proc. Amer. Math. Soc., 1993, 119: 1005-1008

[21]

Zhao S Q, Wang Y Y. Involutions fixing $\bigcup\limits_{i = 1}^m {C{P_i}(1)} \times H{P_i}(n)$. Acta Mathematica Scientia B, 2012, 32: 1021-1034

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/