Boundedness of Iterated Spherical Average on α-Modulation Spaces

Qiang Huang , Xiaomei Wu

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 721 -736.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 721 -736. DOI: 10.1007/s11401-021-0287-0
Article

Boundedness of Iterated Spherical Average on α-Modulation Spaces

Author information +
History +
PDF

Abstract

For the iteration of spherical average (A 1) N and the Laplace operator Δ, we consider the boundedness of the operator Δ(A 1) N on the α-modulation spaces $M_{p,q}^{s,\alpha }$. The authors obtain some sufficient and necessary conditions to ensure the boundedness on the α-modulation spaces. The main theorems significantly improve some known results.

Keywords

Spherical average / α-Modulation spaces / Bessel functions

Cite this article

Download citation ▾
Qiang Huang, Xiaomei Wu. Boundedness of Iterated Spherical Average on α-Modulation Spaces. Chinese Annals of Mathematics, Series B, 2021, 42(5): 721-736 DOI:10.1007/s11401-021-0287-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belinsky E, Dai F, Ditzian Z. Multivariate approximating average. J. Approx. Theory, 2003, 125: 85-105

[2]

Bényi A, Gröchenig K, Okoudjou K A Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal, 2007, 246: 366-384

[3]

Borup L, Nielsen M. Boundedness for pseudodifferential operators on multivariate α-modulation spaces. Ark Mat, 2006, 44: 241-259

[4]

Borwein J, Straub A, Vignat C. Densities of short uniform random walks in higher dimensions. J. Math. Anal. Appl., 2016, 437: 668-707

[5]

Chen J C, Fan D S, Sun L J. Asymptotic estimates for unimodular Fourier multipliers on modulation space. Discret. Contin. Dyn. Syst, 2012, 32: 467-485

[6]

Fan D S, Lou Z J, Wang Z. A note on iterated spherical average on Lebesgue spaces. Nonlinear Anal., 2019, 180: 170-183

[7]

Fan D S, Zhao F Y. Approximation properties of combination of multivariate averages on Hardy spaces. J. Approx. Theory, 2017, 223: 77-95

[8]

Feichtinger H G. Modulation space on locally compact Abeliean group, 1983, Vienna: University of Vienna

[9]

Gröbner P. Banachräume glatter Funktionen und Zerlegungsmethoden, 1992, Vienna: University of Vienna

[10]

Guo W C, Fan D S, Wu H X, Zhao G P. Sharpness of Complex Interpolation on α-Modulation Spaces. J Fourier Anal. Appl., 2016, 22(2): 427-461

[11]

Guo W C, Wu H X, Yang Q, Zhao G P. Characterization of inclusion relations between Wiener amalgam and some classical spaces. J. Funct. Anal., 2017, 273(1): 404-443

[12]

Han J S, Wang B X. α-modulation spaces (I) scaling, embedding and algebraic properties. J. Math. Soc. Japan, 2014, 66: 1315-1373

[13]

Huang Q. Boundedness of iterated spherical average on modulation spaces. Nonlinear Anal., 2020, 199: 1-14

[14]

Huang Q, Chen J C. Cauchy problem for dispersive equations in α-modulation spaces. Electron J. Differential Equations, 2014, 158: 1-10

[15]

Huang Q, Fan D S, Chen J C. Critical exponent for evolution equations in modulation spaces. J. Math. Anal. Appl., 2016, 443(1): 230-242

[16]

Miyachi A. On some singular Fourier multipliers. J. Fac. Sci. Univ. Tokyo Sect. IA Math, 1981, 28: 267-315

[17]

Miyachi A, Nicola F, Riveti S Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Amer. Math. Soc., 2009, 137: 3869-3883

[18]

Pearson K. The problem of the random walk. Nature, 1905, 72(1867): 294

[19]

Peral J. L p estimates for the wave equation. J. Funct. Anal., 1980, 36: 114-145

[20]

Ruzhansky M, Sugimoto M, Wang B X. Modulation spaces and nonlinear evolution equations. Progress in Mathmatics, 2012, 301: 267-283

[21]

Stein E M. Maximal functions: Spherical means. Proc. Nat. Acad. Sci. U.S.A., 1976, 73: 2174-2175

[22]

Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, 1993, Princeton, N. J.: Princeton Univ. Press

[23]

Toft J. Continuity properties for modulation spaces with applications to pseudo-differential calculus, I. J. Funct. Anal., 2004, 207(2): 399-429

[24]

Wang B, Hudizk H. The global Cauchy problem for NLS and NLKG with small rough data. J. Differential Equations, 2007, 232: 36-73

[25]

Wang B X, Huo Z, Hao C, Guo Z. Harmonic Analysis Method for Nonlinear Evolution Equations I, 2011, N.J.: Hackensack, World Scientfic

[26]

Zhao G P, Fan D S, Guo W C. Fractional integral operators on α-modulation spaces. Math. Nachr., 2016, 289(10): 1288-1300

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/