Coburn Type Operators and Compact Perturbations

Tingting Zhou , Bin Liang , Chaoyue Wang

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 677 -692.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (5) : 677 -692. DOI: 10.1007/s11401-021-0285-2
Article

Coburn Type Operators and Compact Perturbations

Author information +
History +
PDF

Abstract

A bounded linear operator T acting on a Hilbert space is called Coburn operator if ker(T − λ) = {0} or ker(T − λ)* = {0} for each λ ∈ ℂ. In this paper, the authors define other Coburn type properties for Hilbert space operators and investigate the compact perturbations of operators with Coburn type properties. They characterize those operators for which has arbitrarily small compact perturbation to have some fixed Coburn property. Moreover, they study the stability of these properties under small compact perturbations.

Keywords

Coburn type properties / Compact perturbations

Cite this article

Download citation ▾
Tingting Zhou, Bin Liang, Chaoyue Wang. Coburn Type Operators and Compact Perturbations. Chinese Annals of Mathematics, Series B, 2021, 42(5): 677-692 DOI:10.1007/s11401-021-0285-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aiena P. Property (w) and perturbations, II. J. Math. Anal. Appl., 2008, 342(2): 830-837

[2]

Aiena P, Aponte E. Polaroid type operators under perturbations. Studia Math., 2013, 214(2): 121-136

[3]

Aiena P, Aponte E, Guillén J R, Peña P. Property (R) under perturbations. Mediterr. J. Math., 2013, 10(1): 367-382

[4]

Aiena P, Biondi M T, Villafañe F. Property (w) and perturbations, III. J. Math. Anal. Appl., 2009, 353(1): 205-214

[5]

Aiena P, Guillén J R, Peña P. Property (w) for perturbations of polaroid operators. Linear Algebra Appl., 2008, 428(8–9): 1791-1802

[6]

Chen Y, Izuchi K J, Young Y J. A Coburn type theorem on the Hardy space of the bidisk. J. Math. Anal. Appl., 2018, 466(1): 1043-1059

[7]

Coburn L A. Weyl’s theorem for nonnormal operators. Michigan Math. J., 1966, 13: 285-288

[8]

Douglas R G. Banach Algebra Techniques in Operator Theory, 1998 Second edition New York: Springer-Verlag

[9]

Herrero D A. Approximation of Hilbert Space Operators, 1, 1989 2nd ed. Harlow: Longman Scientific & Technical

[10]

Herrero D A, Taylor T J, Wang Z Y. Variation of the point spectrum under compact perturbations, 1988, Basel: Birkhäuser 113-158

[11]

Jiang C L, Wang Z Y. Structure of Hilbert Space Operators, 2006, Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd.

[12]

Lee Y J. A Coburn type theorem for Toeplitz operators on the Dirichlet space. J. Math. Anal. Appl., 2014, 414(1): 237-242

[13]

Li C G, Zhou T T. Polaroid type operators and compact perturbations. Studia Mathematica, 2014, 221(2): 175-192

[14]

Li C G, Zhou T T. Orthogonality property ${\cal O}$ and compact perturbations. Complex Anal. Oper. Theory, 2016, 10(8): 1741-1755

[15]

Li C G, Zhu S, Feng Y L. Weyl’s theorem for functions of operators and approximation. Integral Equations Operator Theory, 2010, 67(4): 481-497

[16]

Radjavi H, Rosenthal P. Invariant Subspaces, 2003 2nd ed. Mineola, NY: Dover Publications Inc.

[17]

Vukotić D. A note on the range of Toeplitz operators. Integral Equations Operator Theory, 2004, 50(4): 565-567

[18]

Zhou T T, Li C G, Zhu S. Generalized Weyl’s theorem for functions of operators and compact perturbations. Bull. Korean Math. Soc., 2012, 49(5): 899-910

[19]

Zhu S, Li C G. SVEP and compact perturbations. J. Math. Anal. Appl., 2011, 380(1): 69-75

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/