Perfect State Transfer on Weighted Abelian Cayley Graphs

Xiwang Cao , Keqin Feng , Ying-Ying Tan

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (4) : 625 -642.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (4) : 625 -642. DOI: 10.1007/s11401-021-0283-4
Article

Perfect State Transfer on Weighted Abelian Cayley Graphs

Author information +
History +
PDF

Abstract

Recently, there are extensive studies on perfect state transfer (PST for short) on graphs due to their significant applications in quantum information processing and quantum computations. However, there is not any general characterization of graphs that have PST in literature. In this paper, the authors present a depiction on weighted abelian Cayley graphs having PST. They give a unified approach to describe the periodicity and the existence of PST on some specific graphs.

Keywords

Perfect state transfer / Cayley graph / Eigenvalues of a graph / Weighted graph / Random walk

Cite this article

Download citation ▾
Xiwang Cao, Keqin Feng, Ying-Ying Tan. Perfect State Transfer on Weighted Abelian Cayley Graphs. Chinese Annals of Mathematics, Series B, 2021, 42(4): 625-642 DOI:10.1007/s11401-021-0283-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balilńska K, Cvetković D, Radosavljević Z A survey on integral graphs. Publ. Elektrotehn. Fak. Ser. Mat., 2002, 13: 42-65

[2]

Bašić M, Petković M D, Stevanovic D. Perfect state transfer in integral circulant graphs. Appl. Math. Lett., 2009, 22(7): 1117-1121

[3]

Bridge W G, Mena R A. Rational G-matrices with rational eigenvalues. J. Combin. Theory Ser. A, 1982, 32: 264-280

[4]

Bose, S., Quantum communication through an unmodulated spin chain, Phys. Rev. Lett., 91(20), 2003, Article ID: 207901.

[5]

Casaccino A, Lloyd S, Mancini S, Severini S. Quantum state transfer through a qubit network with energy shifts and fluctuations. Internation Journal of Quantum Information, 2009, 7: 1417-1427

[6]

Chan, A., Complex Hadamard matrices, instantaneous uniform mixing and cubes, 2013, arXiv:1305.5811v1.

[7]

Childs, A., Cleve, R., Deotto, E., et. al., Exponential algorithmic speedup by a quantum walk, Proc. 35th ACM Symp. Theory of Computing, 2003, 59–68.

[8]

Christandl, M., Datta, N., Dorlas, T., et. al., Perfect state transfer of arbitary state in quantum spin networks, Phys. Rev. A, 73(3), 2005, Article ID: 032312.

[9]

Coutinho, G., Quantum State Transfer in Graphs, PhD dissertation, University of Waterloo, 2014.

[10]

Farhi E, Goldstone J, Gutmann S. A quantum algorithm for the Hamiltonian NAND tree. Theory Compt., 2008, 4(8): 169-190

[11]

Godsil C. Periodic graphs. Electronic J. Comb., 2011, 18(1): 23

[12]

Godsil C. State transfer on graphs. Disc. Math., 2012, 312(1): 129-147

[13]

Harary F, Schwenk A J. Bari R, Harary F. Which graphs have integral spectra?. Graphs and Combinatorics, 1974, Berlin: Springer-Verlag 45-51

[14]

Klotz W, Sander T. Integral Cayley graphs over abelian groups. Electronic J. Combin., 2010, 17(1): R81

[15]

Lovasz L. Spectra of graphs with transitive groups. Period. Math. Hungar., 1975, 6: 191-196

[16]

Mesnager S. Bent Functions, Fundamentals and Results, 2016, Switzerland: Springer-Verlag, International Publishing

[17]

Petkovic M D, Bašić M. Further results on the perfect state transfer in integral circulant graphs. Computers and Math. Appl., 2011, 61(2): 300-312

[18]

Tan Y Y, Feng K Q, Cao X W. Perfect state transfer on abelian Cayley graphs. Linear Algebra Appl., 2019, 563: 331-352

[19]

Zhan, H., An infinite family of circulant graphs with perfect state trnasfer in discrete quantum walks, 2017, arXiv: 1707.06703v1.

AI Summary AI Mindmap
PDF

326

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/