PDF
Abstract
The Carleson measures for weighted Dirichlet spaces had been characterized by Girela and Peláez, who also characterized the boundedness of Volterra type operators between weighted Dirichlet spaces. However, their characterizations for the boundedness are not complete. In this paper, the author completely characterizes the boundedness and compactness of Volterra type operators from the weighted Dirichlet spaces D α p to D β q (−1 < α, β and 0 < p < q < ∞), which essentially complete their works. Furthermore, the author investigates the order boundedness of Volterra type operators between weighted Dirichlet spaces.
Keywords
Volterra type operator
/
Boundedness
/
Compactness
/
Weighted Dirichlet space
/
Order boundedness
Cite this article
Download citation ▾
Qingze Lin.
Volterra Type Operators on Weighted Dirichlet Spaces.
Chinese Annals of Mathematics, Series B, 2021, 42(4): 601-612 DOI:10.1007/s11401-021-0281-6
| [1] |
Aleman A, Cima J. An integral operator on H p and Hardy’s inequality. J. Anal. Math., 2001, 85: 157-176
|
| [2] |
Aleman A, Siskakis A. An integral operator on H p. Complex Variables Theory Appl., 1995, 28(2): 149-158
|
| [3] |
Aleman A, Siskakis A. Integration operators on Bergman spaces. Indiana Univ. Math. J., 1997, 46(2): 337-356
|
| [4] |
Carleson L. An interpolation problem for bounded analytic functions. Amer. J. Math., 1958, 80: 921-930
|
| [5] |
Constantin O, Peláez J. Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces. J. Geom. Anal., 2016, 26(2): 1109-1154
|
| [6] |
Čučković Ž, Zhao R. Weighted composition operators between different weighted Bergman spaces and different Hardy spaces. Illinois J. Math., 2007, 51: 479-498
|
| [7] |
Duren P. Extension of a theorem of Carleson. Bull. Amer. Math. Soc., 1969, 75: 143-146
|
| [8] |
Duren P, Schuster A. Bergman Spaces, 2004, Providence, RI: Amer. Math. Soc. 100
|
| [9] |
Galanopoulos P, Girela D, Peláez J. Multipliers and integration operators on Dirichlet spaces. Trans. Amer. Math. Soc., 2011, 363(4): 1855-1886
|
| [10] |
Gao Y, Kumar S, Zhou Z. Order bounded weighted composition operators mapping into the Dirichlet type spaces. Chin. Ann. Math. Ser. B, 2016, 37(4): 585-594
|
| [11] |
Girela D, Peláez J. Carleson measures, multipliers and integration operators for spaces of Dirichlet type. J. Funct. Anal., 2006, 241(1): 334-358
|
| [12] |
Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman Spaces, 2000, New York: Springer-Verlag 199
|
| [13] |
Hibschweiler R. Order Bounded Weighted Composition Operators, 2008, Providence, RI: Amer. Math. Soc. 454
|
| [14] |
Hunziker H, Jarchow H. Composition operators which improve integrability. Math. Nachr., 1991, 152: 83-99
|
| [15] |
Kumar S. Weighted composition operators between spaces of Dirichlet type. Rev. Mat. Complut., 2009, 22(2): 469-488
|
| [16] |
Laitila J, Miihkinen S, Nieminen P. Essential norms and weak compactness of integration operators. Arch. Math., 2011, 97(1): 39-48
|
| [17] |
Li P, Liu J, Lou Z. Integral operators on analytic Morrey spaces. Sci. China Math., 2014, 57(9): 1961-1974
|
| [18] |
Li S, Stević S. Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl., 2008, 338(2): 1282-1295
|
| [19] |
Li S, Stević S. Products of Volterra type operator and composition operator from H ∞ and Bloch spaces to Zygmund spaces. J. Math. Anal. Appl., 2008, 345(1): 40-52
|
| [20] |
Lin Q. Volterra type operators between Bloch type spaces and weighted Banach spaces. Integral Equations Operator Theory, 2019, 91(2): 91 13
|
| [21] |
Lin Q, Liu J, Wu Y. Volterra type operators on S p(ⅅ) spaces. J. Math. Anal. Appl., 2018, 461: 1100-1114
|
| [22] |
Lin Q, Liu J, Wu Y. Strict singularity of Volterra type operators on Hardy spaces. J. Math. Anal. Appl., 2020, 492(1): 124438 9 pages.
|
| [23] |
Luecking D. Forward and reverse inequalities for functions in Bergman spaces and their derivatives. Amer. J. Math., 1985, 107: 85-111
|
| [24] |
Mengestie T. Product of Volterra type integral and composition operators on weighted Fock spaces. J. Geom. Anal., 2014, 24(2): 740-755
|
| [25] |
Mengestie T. Path connected components of the space of Volterra-type integral operators. Arch. Math., 2018, 111(4): 389-398
|
| [26] |
Pau J, Zhao R. Carleson measures, Riemann-Stieltjes and multiplication operators on a general family of function spaces. Integr. Equ. Oper. Theory, 2014, 78: 483-514
|
| [27] |
Pommerenke Ch. Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Comment. Math. Helv. (German), 1977, 52(4): 591-602
|
| [28] |
Sharma A. On order bounded weighted composition operators between Dirichlet spaces. Positivity, 2017, 21(3): 1213-1221
|
| [29] |
Ueki S. Order bounded weighted composition operators mapping into the Bergman space. Complex Anal. Oper. Theory, 2012, 6(2): 549-560
|
| [30] |
Wang S, Wang M, Guo X. Differences of Stevic-Sharma operators. Banach J. Math. Anal., 2020, 14(3): 1019-1054
|
| [31] |
Wu Z. Carleson measures and multipliers for Dirichlet spaces. J. Funct. Anal., 1999, 169: 148-163
|
| [32] |
Xiao J. The Q p Carleson measure problem. Adv. Math., 2008, 217(5): 2075-2088
|
| [33] |
Zhao R. Pointwise multipliers from weighted Bergman spaces and Hardy spaces to weighted Bergman spaces. Ann. Acad. Sci. Fenn. Math., 2004, 29(1): 139-150
|
| [34] |
Zhu K. Operator Theory in Function Spaces, 2007 2nd ed. Providence, RI: Amer. Math. Soc.
|