Hermitian-Poisson Metrics on Flat Bundles over Complete Hermitian Manifolds

Changpeng Pan

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (4) : 575 -582.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (4) : 575 -582. DOI: 10.1007/s11401-021-0279-0
Article

Hermitian-Poisson Metrics on Flat Bundles over Complete Hermitian Manifolds

Author information +
History +
PDF

Abstract

In this paper, the author solves the Dirichlet problem for Hermitian-Poisson metric equation $\sqrt { - 1} {\Lambda _\omega }{G_H} = \lambda {\rm{Id}}$ and proves the existence of Hermitian-Poisson metrics on flat bundles over a class of complete Hermitian manifolds. When λ = 0, the Hermitian-Poisson metric is a Hermitian harmonic metric.

Keywords

Flat bundle / Hermitian harmonic metric / Hermitian-poisson metric / Complete Hermitian manifolds

Cite this article

Download citation ▾
Changpeng Pan. Hermitian-Poisson Metrics on Flat Bundles over Complete Hermitian Manifolds. Chinese Annals of Mathematics, Series B, 2021, 42(4): 575-582 DOI:10.1007/s11401-021-0279-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Collins T C, Jacob A, Yau S T. Poisson metrics on flat vector bundles over non-compact curves. Comm. Anal. Geom., 2019, 27(3): 529-597

[2]

Corlette K. Flat G-bundles with canonical metrics. J. Differential Geom., 1988, 28(3): 361-382

[3]

Ding W, Wang Y. Harmonic maps of complete noncompact Riemannian manifolds. Internat. J. Math., 1991, 2(6): 617-633

[4]

Donaldson S K. Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. (3), 1987, 55(1): 127-131

[5]

Donaldson S K. Boundary value problems for Yang-Mills fields. J. Geom. Phys., 1992, 8(1–4): 89-122

[6]

Guichard O. An introduction to the differential geometry of flat bundles and of Higgs bundles, The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 2018, 36: 1-63

[7]

Jost J, Yau S T. A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math., 1993, 170(2): 221-254

[8]

Jost J, Zuo K. Harmonic maps and SL(n, ℂ)-representations of fundamental groups of quasi-projective manifolds. J. Algebraic Geom., 1996, 5(1): 77-106

[9]

Jost J, Zuo K. Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasi-projective varieties. J. Differential Geom., 1997, 46(3): 467-503

[10]

Ni L. Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds. Math. Z., 1999, 232(2): 331-355

[11]

Ni L, Ren H. Hermitian-Einstein metrics for vector bundles on complete Kähler manifolds. Trans. Amer. Math. Soc., 2001, 353(2): 441-456

[12]

Simpson C. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc., 1988, 1(4): 867-918

[13]

Simpson C. Higgs bundles and local systems. Inst. Hautes tudes Sci. Publ. Math., 1992, 75: 5-95

[14]

Taylor M E. Partial Differential Equations I, Basic Theory, Texts in Applied Mathematics, 1996, New York: Springer-Verlag 115

[15]

Zhang X. Hermitian-Einstein metrics on holomorphic vector bundles over Hermitian manifolds. J. Geom. Phys., 2005, 53(3): 315-335

[16]

Zhang X. Hermitian Yang-Mills-Higgs metrics on complete Kähler manifolds. Canad. J. Math., 2005, 57(4): 871-896

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/