Locally Conformal Kähler and Hermitian Yang-Mills Metrics

Jieming Yang

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (4) : 511 -518.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (4) : 511 -518. DOI: 10.1007/s11401-021-0274-5
Article

Locally Conformal Kähler and Hermitian Yang-Mills Metrics

Author information +
History +
PDF

Abstract

The author shows that if a locally conformal Kähler metric is Hermitian Yang-Mills with respect to itself with Einstein constant c ≤ 0, then it is a Kahler-Einstein metric. In the case of c > 0, some identities on torsions and an inequality on the second Chern number are derived.

Keywords

Hermitian Yang-Mills metric / Locally conformal Kähler metric / Torsion / Chern number inequality

Cite this article

Download citation ▾
Jieming Yang. Locally Conformal Kähler and Hermitian Yang-Mills Metrics. Chinese Annals of Mathematics, Series B, 2021, 42(4): 511-518 DOI:10.1007/s11401-021-0274-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen H, Chen L, Nie X. Chern-Ricci curvatures, holomorphic sectional curvature and Hermitian metric. Sci. China Math., 2021, 64: 763-780

[2]

Dragomir, S. and Ornea, L., Locally conformal Kähler geometry, Progress in Math., 155, Birkhäuser, 1998.

[3]

Gauduchon P. La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann., 1984, 267: 495-518

[4]

Gauduchon P, Ivanov S. Einstein-Hermitian surfaces and Hermitian Einstein-Weyl structures in dimension 4. Math. Z., 1997, 226: 317-326

[5]

Kobayashi S. Differential Geometry of Complex Vector Bundles, 1987, Princeton: Iwanami Shoten Publishers and Princeton University Press

[6]

Liu K, Yang X. Geometry of Hermitian manifolds. Internat. J. Math., 2012, 23: 1250055 40 pp.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/