Time-Periodic Fitzhugh-Nagumo Equation and the Optimal Control Problems

Hanbing Liu , Wenqiang Luo , Shaohua Li

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (3) : 471 -486.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (3) : 471 -486. DOI: 10.1007/s11401-021-0269-2
Article

Time-Periodic Fitzhugh-Nagumo Equation and the Optimal Control Problems

Author information +
History +
PDF

Abstract

In this work, the authors considered the periodic optimal control problem of Fitzhugh-Nagumo equation. They firstly prove the existence of time-periodic solution to Fitzhugh-Nagumo equation. Then they show the existence of optimal solution to the optimal control problem, and finally the first order necessary condition is obtained by constructing an appropriate penalty function.

Keywords

Fitzhugh-Nagumo equation / Time-periodic / Optimal control

Cite this article

Download citation ▾
Hanbing Liu, Wenqiang Luo, Shaohua Li. Time-Periodic Fitzhugh-Nagumo Equation and the Optimal Control Problems. Chinese Annals of Mathematics, Series B, 2021, 42(3): 471-486 DOI:10.1007/s11401-021-0269-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amann H. Periodic solutions of semilinear parabolic equations, 1978, New York: Elsevier, Academic Press 1-29 Nonlinear Analysis

[2]

Azzato J, Krawczyk J B. Using a finite horizon numerical optimisation method for a periodic optimal control problem. Automatica, 2008, 44(6): 1642-1651

[3]

Barbu V. Optimal control of Navier-Stokes equations with periodic inputs. Nonlinear Anal., Theory Methods Appl., 1998, 31(1–2): 15-31

[4]

Barbu V, Pavel N H. Periodic optimal control in Hilbert space. Appl. Math. Opt., 1996, 33(2): 169-188

[5]

Brandao J V, Fernandez-Cara E, Magalhaes P M D, Rojas-Medar M A. Theoretical analysis and control results for the Fitzhugh-Nagumo equation. Electron. J. Differ. Eq., 2008, 2008(164): 1-20

[6]

Casas E, Ryll C, Tröltzsch F. Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems. Comput. Meth. Appl. Mat., 2014, 13: 415-442

[7]

Casas E, Ryll C, Tröoltzsch F. Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation. SIAM J. Control Optim., 2015, 53(4): 2168-2202

[8]

Hastings S P. Some mathematical problems from neurobiology. Amer. Math. Monthly, 1975, 82: 881-895

[9]

He F, Leung A, Stojanovic S. Periodic optimal control for parabolic Volterra-Lotka type equations. Mathematical Methods in the Applied Sciences, 1995, 18(2): 127-146

[10]

Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4): 449-566

[11]

Kunisch K, Wang L. Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints. J. Math. Anal. Appl., 2012, 395(1): 114-130

[12]

Li X, Yong J. Optimal Control Theory for Infinite Dimensional Systems, 1995, Boston, MA: Birkhäuser Boston, Inc.

[13]

Liu H. Boundary optimal control of time-periodic stokes-oseen flows. J. Optimiz. Theory App., 2012, 154(3): 1015-1035

[14]

Maurer H, Buäskens C, Feichtinger G. Solution techniques for periodic control problems: A case study in production planning. Optimal Control Applications and Methods, 1998, 19(3): 185-203

[15]

Wang G. Optimal controls of 3-dimensional navier-stokes equations with state constraints. SIAM J. Control Optim., 2002, 41(2): 583-606

[16]

Zeidler E. Nonlinear Functional Analysis and its Applications I: Fixed-Point Theorems, 1986, New York: Springer-Verlag

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/