Weighted Estimates of Variable Kernel Fractional Integral and Its Commutators on Vanishing Generalized Morrey Spaces with Variable Exponent

Xukui Shao , Shuangping Tao

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (3) : 451 -470.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (3) : 451 -470. DOI: 10.1007/s11401-021-0268-3
Article

Weighted Estimates of Variable Kernel Fractional Integral and Its Commutators on Vanishing Generalized Morrey Spaces with Variable Exponent

Author information +
History +
PDF

Abstract

In this paper, the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces. And the corresponding commutators generated by BMO function are also considered.

Keywords

Fractional integral / Commutator / Variable kernel / Vanishing generalized weighted Morrey space with variable exponent / BMO space

Cite this article

Download citation ▾
Xukui Shao, Shuangping Tao. Weighted Estimates of Variable Kernel Fractional Integral and Its Commutators on Vanishing Generalized Morrey Spaces with Variable Exponent. Chinese Annals of Mathematics, Series B, 2021, 42(3): 451-470 DOI:10.1007/s11401-021-0268-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Calderón A, Zygmund A. On a problem of Mihlin. Trans. Amer. Math. Soc., 1955, 78: 209-224

[2]

Muckenhoupt B, Wheeden R. Weighted norm inequalities for singular and fractional integrals. Trans. Amer. Math. Soc., 1971, 161: 249-258

[3]

Ding Y, Lin C, Shao S. On the Marcinkiewicz integral with variable kernels. Indiana Univ. Math. J., 2004, 53(3): 805-821

[4]

Chen J, Ding Y. Littlewood-paley operator with variable kernel. Sci. China Math., 2006, 36A(1): 38-51

[5]

Tao S, Shao X. Boundedness of Marcinkiewicz integrals with variable kernel on the Homogeneous Morrey-Herz spaces. J. Lanzhou Univ. Nat. Sci., 2010, 46(3): 102-107

[6]

Wang H. Estimates of some integral operators with bounded variable kernel on the Hardy and weak Hardy spaces over ℝn. Acta Math. Sinica, 2016, 32(4): 411-438

[7]

Shao, X. and Tao, S., Weak type estimates of variable kernel fractional integral and their commutators on variable exponent Morrey spaces, Journal of Function Spaces, 2019, Art. ID 7152346, 2019:11.

[8]

Calderón A, Zygmund A. On singular integral with variable kernels. Appl. Anal., 1978, 7: 221-238

[9]

Wang H. Boundedness of several integral operators with bounded variable kernel on Hardy and Weak Hardy spaces. Internat. J. Math., 2013, 24: 1-22

[10]

Shao X, Tao S, Wang S. Weighted boundedness of commutators of fractional integral opraters with variable kernels on Morrey-Herz spaces. Acta Math. Appl. Sin., 2014, 37(3): 497-506

[11]

Shao X, Tao S. Boundedness of Marcinkiewicz integrals and commutators with variable kernel on Morrey spaces with variable exponents. Acta Math. Sci. Ser. A Chin. Ed., 2018, 38(6): 1067-1075

[12]

Kováčik O, Rákosník J. On spaces L p(x) and W k,p(x). Czechoslovak Math. J., 1991, 41(4): 592-618

[13]

Diening L, Harjulehto P, Hästö P, Ruzicka M. Lebesgue and Sobolev Spaces with Variable Exponent, 2011, Heidelberg: Springer-Verlag

[14]

Fan X, Zhao D. On the spaces L p(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. Appl., 2001, 263(2): 424-446

[15]

Samko S. On a progress in the theory of Lebesgue spaces with variable exponent: Maximal and singular operators. Integral Transforms Spec. Funct., 2005, 16(5–6): 461-482

[16]

Wang L, Tao S. Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable exponent. Turkish J. Math., 2016, 40: 122-145

[17]

Almeida A, Hasanov J, Samko S. Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J., 2008, 15(2): 1-15

[18]

Mizuta Y, Shimomura T. Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Japan, 2008, 60: 583-602

[19]

Chen X, Chen J. The boundedness of sublinear opraters on generalized Morrey spaces and its application. Chinese J. Contemp. Math., 2011, 32A(6): 705-720

[20]

Ho K. Fractional integral opraters with homogeneous kernels on Morrey spaces with variable exponents. J. Math. Soc. Japan, 2017, 69(3): 1059-1077

[21]

Ho K. Weak type estimates of fractional integral opraters on Morrey spaces with variable exponents. Acta Appl. Math., 2019, 159: 1-10

[22]

Tao S, Li L. Boundedness of Marcinkiewicz integrals and commutators on Morrey spaces with variable exponents. Chinese Ann. Math. Ser. A, 2016, 37A(1): 55-70

[23]

Guliyev, V., Hasanov, J. and Badalov, X., Commutators of Riesz potential in the vanishing generalized weighted Morrey spaces with variable exponent, arXiv: 1812.07314v1 [math. F A]

[24]

Long P, Han H. Characterizations of some operators on the vanishing generalized Morrey spaces with variable exponent. J. Math. Anal. Appl., 2016, 437: 419-430

[25]

Capone C, Cruz-Uribe D, Fiorenza A. The Fractional maximal operator and fractional integrals on variable L p spaces. Rev. Mat. Iberoam., 2007, 23: 743-770

[26]

Cruz-Uribe D, Fiorenza A, Martell J, Pérez C. The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math., 2006, 31(2): 239-264

[27]

Ho K. Singular integral operators, John-Nirenberg inequalities and TribelLizorkin type spaces on weighted Lebesgue spaces with variable exponents. Rev. Un. Mat. Argentina, 2016, 57(1): 85-101

[28]

Kopaliani T. Infimal convolution and Muckenhoupt A p(.) condition in variable L p spaces. Arch. Math. (Basel), 2007, 89(2): 185-192

[29]

Gorosito O, Pradolini G, Salinas O, Fe S. Boundedness of fractional operators in weighted variable exponent spaces with non doubling measures. Czechoslovak Math. J., 2010, 60(135): 1007-1023

[30]

Guliyev V. Generalized local Morrey spaces and fractional integral operators with rough kernel. J. Math. Sci. (N.Y.), 2013, 193(2): 211-227

[31]

Cruz-Uribe D, Wang L. Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Amer. Math. Soc., 2016, 369(2): 1205-1235

[32]

Lu S, Ding Y, Yan D. Singular Integral and Related Topics, 2007, Singapore: World Scientific

[33]

Diening, L. and Hästö, P., Muckenhoupt weights in variable exponent spaces, 2008, http://www.researchgate.net/publication/228779582.

[34]

Guliyev V. Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian Math. J., 2012, 3(3): 33-61

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/