Moduli Space of Quasi-Polarized K3 Surfaces of Degree 6 and 8

Zhiyuan Li , Zhiyu Tian

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (3) : 427 -450.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (3) : 427 -450. DOI: 10.1007/s11401-021-0267-4
Article

Moduli Space of Quasi-Polarized K3 Surfaces of Degree 6 and 8

Author information +
History +
PDF

Abstract

In this paper, the authors study the moduli space of quasi-polarized complex K3 surfaces of degree 6 and 8 via geometric invariant theory. The general members in such moduli spaces are complete intersections in projective spaces and they have natural GIT constructions for the corresponding moduli spaces and they show that the K3 surfaces with at worst ADE singularities are GIT stable. They give a concrete description of boundary of the compactification of the degree 6 case via the Hilbert-Mumford criterion. They compute the Picard group via Noether-Lefschetz theory and discuss the connection to the Looijenga’s compactifications from arithmetic perspective. One of the main ingredients is the study of the projective models of K3 surfaces in terms of Noether-Lefschetz divisors.

Keywords

K3 surfaces / GIT / Noether-Lefschetz divisor / Looijenga compactification

Cite this article

Download citation ▾
Zhiyuan Li, Zhiyu Tian. Moduli Space of Quasi-Polarized K3 Surfaces of Degree 6 and 8. Chinese Annals of Mathematics, Series B, 2021, 42(3): 427-450 DOI:10.1007/s11401-021-0267-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold V I, Gusein-Zade S M, Varchenko A N. Singularities of Differentiable Maps, Volume 1, Modern Birkhäuser Classics, 2012, New York: Birkhäuser/Springer

[2]

Benoist O. Quelques espaces de modules d’intersections complètes lisses qui sont quasi-projectifs. J. Eur. Math. Soc. (JEMS), 2014, 16(8): 1749-1774

[3]

Bergeron N, Li Z Y, Millson J, Moeglin C. The Noether-Lefschetz conjecture and generalizations. Invent. Math., 2017, 208(2): 501-552

[4]

Berndt B C, Evans R J. The determination of Gauss sums. Bull. Amer. Math. Soc. (N.S.), 1981, 5(2): 107-129

[5]

Bruinier J H. On the rank of Picard groups of modular varieties attached to orthogonal groups. Compositio Math., 2002, 133(1): 49-63

[6]

Byun S H, Lee Y N. Stability of hypersurface sections of quadric threefolds. Sci. China Math., 2015, 58(3): 479-486

[7]

Fedorchuk M, Smyth D I. Stability of genus five canonical curves, A celebration of algebraic geometry, 2013, Providence, RI: Amer. Math. Soc. 281-310 18

[8]

Francois, G., Li, Z. Y., Laza, R., et. al., Compactifications of moduli space of quasi-polarized K3 surfaces of degree 6, in preparation.

[9]

Greer F, Li Z Y, Tian Z Y. Picard groups on moduli of K3 surfaces with Mukai models. Int. Math. Res. Not. IMRN, 2015, 16: 7238-7257

[10]

Johnsen T, Knutsen A L. K3 projective models in scrolls, 2004, Berlin: Springer-Verlag

[11]

Knop F, Kraft H, Vust T. The Picard group of a G-variety, Algebraische Transformationsgruppen und Invariantentheorie, 1989, Basel: Birkhäuser 77-87 DMV Sem., 13

[12]

Laza R. The moduli space of cubic fourfolds. J. Algebraic Geom., 2009, 18(3): 511-545

[13]

Laza R. The moduli space of cubic fourfolds via the period map. Ann. of Math., 2010, 172(1): 673-711

[14]

Looijenga E. Compactifications defined by arrangements II: Locally symmetric varieties of type IV. Duke Math. J., 2003, 119(3): 527-588

[15]

Luna D. Adhérences d’orbite et invariants. Invent. Math., 1975, 29(3): 231-238

[16]

Maulik D, Pandharipande R. Gromov-Witten theory and Noether-Lefschetz theory, A celebration of algebraic geometry, 2013, Providence, RI: Amer. Math. Soc. 469-507

[17]

Mumford D, Fogarty J, Kirwan F. Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 1994 3rd. ed. Berlin: Springer-Verlag 34

[18]

O’Grady, K. G., Moduli of Abelian and K3 Surfaces, ProQuest LLC, Ann Arbor, MI, 1986, Thesis (Ph.D.)-Brown University.

[19]

Saint-Donat B. Projective models of K-3 surfaces. Amer. J. Math., 1974, 96: 602-639

[20]

Shah J. A complete moduli space for K3 surfaces of degree 2. Ann. of Math., 1980, 112(3): 485-510

[21]

Shah J. Degenerations of K3 surfaces of degree 4. Trans. Amer. Math. Soc., 1981, 263(2): 271-308

[22]

Sterk H. Lattices and K3 surfaces of degree 6. Linear Algebra Appl., 1995, 226/228: 297-309

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/