A Metric Space with Transfinite Asymptotic Dimension 2ω + 1

Yan Wu , Jingming Zhu

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (3) : 357 -366.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (3) : 357 -366. DOI: 10.1007/s11401-021-0263-8
Article

A Metric Space with Transfinite Asymptotic Dimension 2ω + 1

Author information +
History +
PDF

Abstract

The authors construct a metric space whose transfinite asymptotic dimension and complementary-finite asymptotic dimension are both 2ω + 1, where ω is the smallest infinite ordinal number. Therefore, an example of a metric space with asymptotic property C is obtained.

Keywords

Transfinite asymptotic dimension / Complementary-finite asymptotic dimension / Asymptotic property C

Cite this article

Download citation ▾
Yan Wu, Jingming Zhu. A Metric Space with Transfinite Asymptotic Dimension 2ω + 1. Chinese Annals of Mathematics, Series B, 2021, 42(3): 357-366 DOI:10.1007/s11401-021-0263-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gromov M. Asymptotic invariants of infinite groups, in: Geometric Group Theory, Vol.2, Sussex, 1991, 1993, Cambridge: Cambridge Univ. Press 1-295

[2]

Yu G. The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math., 1998, 147(2): 325-355

[3]

Higson N, Roe J. Amenable group actions and Novikov conjecture. J. Reine Agnew. Math., 2000, 519: 143-153

[4]

Dranishnikov A. Asymptotic topology. Russ. Math. Surv., 2000, 55: 1085-1129

[5]

Radul T. On transfinite extension of asymptotic dimension. Topol. Appl., 2010, 157: 2292-2296

[6]

Zhu, J. and Wu, Y., A metric space with its transfinite asymptotic dimension ω + 1, Topol. Appl., 273, 2020, https://doi.org/10.1016/j.topol.2020.107115.

[7]

Zhu, J. and Wu, Y., Examples of metric spaces with asymptotic property C, arxiv.org:1912.02103.

[8]

Bell G, Dranishnikov A. Asymptotic dimension in Bedlewo. Topol. Proc., 2011, 38: 209-236

[9]

Wu Y, Zhu J. Classification of metric spaces with infinite asymptotic dimension. Topol. Appl., 2018, 238: 90-101

[10]

Wu Y, Zhu J. The relationship between asymptotic decomposition properties. Topol. Appl., 2021, 292: 107623

[11]

Engelking R. Theory of Dimensions: Finite and Infinite, 1995, Lemgo: Heldermann Verlag

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/