Translating Surfaces of the Non-parametric Mean Curvature Flow in Lorentz Manifold M 2 × ℝ*

Li Chen , Dan-Dan Hu , Jing Mao , Ni Xiang

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (2) : 297 -310.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (2) : 297 -310. DOI: 10.1007/s11401-021-0259-4
Article

Translating Surfaces of the Non-parametric Mean Curvature Flow in Lorentz Manifold M 2 × ℝ*

Author information +
History +
PDF

Abstract

In this paper, for the Lorentz manifold M 2 × ℝ with M 2 a 2-dimensional complete surface with nonnegative Gaussian curvature, the authors investigate its spacelike graphs over compact, strictly convex domains in M 2, which are evolving by the non-parametric mean curvature flow with prescribed contact angle boundary condition, and show that solutions converge to ones moving only by translation.

Keywords

Translating surfaces / Mean curvature flow / Lorentz manifolds

Cite this article

Download citation ▾
Li Chen, Dan-Dan Hu, Jing Mao, Ni Xiang. Translating Surfaces of the Non-parametric Mean Curvature Flow in Lorentz Manifold M 2 × ℝ*. Chinese Annals of Mathematics, Series B, 2021, 42(2): 297-310 DOI:10.1007/s11401-021-0259-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altschuler S-J, Wu L-F. Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc. Var. Partial Differential Equations, 1994, 2: 101-111

[2]

Angenent S-B, Velázquez J-J-L. Asymptotic shape of cusp singularities in curve shortening. Duke Math. J., 1995, 77: 71-110

[3]

Angenent S-B, Velázquez J-J-L. Degenerate neckpinches in mean curvature flow. J. Reine Angew. Math., 1997, 482: 15-66

[4]

Chen L, Mao J. Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold. J. Geom. Anal., 2018, 28: 921-949

[5]

Chen, L., Mao, J., Xiang, N. and Xu, C., Inverse mean curvature flow inside a cone in warped products, arXiv:1705.04865v3, 2017.

[6]

Gilbarg D, Trudinger N. Elliptic Partial Differential Equations, 1983, Berlin, Heidelberg, New York: Springer-Verlag

[7]

Guan B. Mean curvature motion of nonparametric hypersurfaces with contact angle condition. Elliptic and Parabolic Method in Geometry, 1996, (MA): Peters, A. K., Wellesley 47-56

[8]

Huisken G. Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 1984, 20: 237-266

[9]

Huisken G. Non-parametric mean curvature evolution with boundary conditions. J. Differential Equat., 1989, 77: 369-378

[10]

Huisken G. Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom., 1990, 31: 285-299

[11]

Lions P, Trudinger N, Urbas J. The Neumann problem for equations of Monge-Ampère type. Commun. Pure Appl. Math., 1986, 39: 539-563

[12]

Shahriyari L. Translating graphs by mean curvature flow. Geom. Dedicata, 2015, 175: 57-64

[13]

Stone, A., The mean curvature evolution of graphs, Honour’s Thesis, ANU, 31, 1989.

[14]

Xin Y-L. Translating solitons of the mean curvature flow. Calc. Var. Partial Differential Equations, 2015, 54: 1995-2016

[15]

Zhou H-Y. Nonparametric mean curvature type flows of graphs with contact angle conditions. Int. Math. Res. Not., 2018, 19: 6026-6069

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/