A Rigidity Result of Spacelike Self-Shrinkers in Pseudo-Euclidean Spaces

Hongbing Qiu

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (2) : 291 -296.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (2) : 291 -296. DOI: 10.1007/s11401-021-0258-5
Article

A Rigidity Result of Spacelike Self-Shrinkers in Pseudo-Euclidean Spaces

Author information +
History +
PDF

Abstract

In this paper, the author proves that the spacelike self-shrinker which is closed with respect to the Euclidean topology must be flat under a growth condition on the mean curvature by using the Omori-Yau maximum principle.

Keywords

Self-Shrinker / Rigidity / Omori-Yau maximum principle / Pseudo-distance

Cite this article

Download citation ▾
Hongbing Qiu. A Rigidity Result of Spacelike Self-Shrinkers in Pseudo-Euclidean Spaces. Chinese Annals of Mathematics, Series B, 2021, 42(2): 291-296 DOI:10.1007/s11401-021-0258-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adames M R. Spacelike self-similar shrinking solutions of the mean curvature flow in pseudo-Euclidean spaces. Comm. Anal. Geom., 2014, 22(5): 897-929

[2]

Chau A, Chen J, Yuan Y. Rigidity of Entire self-shrinking solutions to curvature flows. J. Reine Angew. Math., 2012, 664: 229-239

[3]

Chen Q, Jost J, Qiu H B. Omori-Yau maximum principles, V-harmonic maps and their geometric applications. Ann. Glob. Anal. Geom., 2014, 46: 259-279

[4]

Chen Q, Qiu H B. Rigidity of self-shrinkers and translating solitons of mean curvature flows. Adv. Math., 2016, 294: 517-531

[5]

Cheng S Y, Yau S T. Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces. Ann. of Math., 1976, 104: 407-419

[6]

Ding, Q. and Wang, Z., On the self-shrinking system in arbitrary codimensional spaces, arXiv:1012.0429v2, 2010.

[7]

Ding Q, Xin Y L. The rigidity theorems for Lagrangian self-shrinkers. J. Reine Angew. Math., 2014, 692: 109-123

[8]

Ecker K. On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetime. J. Austral. Math. Soc. Ser A, 1993, 55(1): 41-59

[9]

Ecker K. Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differential Geom., 1997, 46(3): 481-498

[10]

Ecker K. Mean curvature flow of spacelike hypersurfaces near null initial data. Comm. Anal. Geom., 2003, 11(2): 181-205

[11]

Halldorsson H P. Self-similar sulutions to the mean curvature flow in the Minkowski plane ℝ1,1. J. Reine Angew. Math., 2015, 704: 209-243

[12]

Huang R. Lagrangian mean curvature flow in Pseudo-Euclidean space. Chin. Ann. Math. Ser B, 2011, 32(2): 187-200

[13]

Huang R, Wang Z. On the entire self-shrinking solutions to Lagrangian mean curvature flow. Calc. Var. Partial Differential Equations, 2011, 41: 321-339

[14]

Jost J, Xin Y L. Some aspects of the global geometry of entire space-like submanifolds. Result Math., 2001, 40: 233-245

[15]

Liu H Q, Xin Y L. Some results on space-like self-shrinkers. Acta Math. Sinica, English Series, 2016, 32(1): 69-82

[16]

Xin Y L. Mean curvature flow with bounded Gauss image. Results. Math., 2011, 59: 415-436

[17]

Xin Y L. Minimal Submanifolds and Related Topics, 2019 2nd ed. Hackensack, NJ: World Scientific Publ.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/