Metrics and Connections on the Bundle of Affinor Frames

Habil Fattayev , Arif Salimov

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 121 -134.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 121 -134. DOI: 10.1007/s11401-021-0248-7
Article

Metrics and Connections on the Bundle of Affinor Frames

Author information +
History +
PDF

Abstract

In this paper the authors consider the bundle of affinor frames over a smooth manifold, define the Sasaki metric on this bundle, and investigate the Levi-Civita connection of Sasaki metric. Also the authors determine the horizontal lifts of symmetric linear connection from a manifold to the bundle of affinor frames and study the geodesic curves corresponding to the horizontal lift of the linear connection.

Keywords

Bundle of affinor frames / Riemannian manifold / Sasaki metric / Horizontal lift / Geodesic curve

Cite this article

Download citation ▾
Habil Fattayev, Arif Salimov. Metrics and Connections on the Bundle of Affinor Frames. Chinese Annals of Mathematics, Series B, 2021, 42(1): 121-134 DOI:10.1007/s11401-021-0248-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aso K. Notes on some properties of the sectional curvature of the tangent bundle. Yakohama Math. J., 1981, 29(3): 1-5

[2]

Cordero L A, de Leon M. Horizontal lift of connection to the frame bundle. Boll. Un. Mat. Ital., 1984, 6: 223-240

[3]

Fattayev H D. Transfer of some differential geometric structures from (1, 1)- tensor bundle to the (0, 2)-tensor bundle over a Riemannian manifold. Trans. of NAS of Azerbaijan, Issue Math., Ser. of Phys. Tech. and Math. Sciences, 2018, 38(1): 52-61

[4]

Fattayev, H. D., Some problems of differential geometry of the bundle of affinor frames, News of Baku Univ., Ser. of Physico-Math. Sciences, (3), 2018, 45–57.

[5]

Fattayev H D, Salimov A A. Diagonal lifts of metrics to coframe bundle. Proc. of IMM of NAS of Azerbaijan, 2018, 44(2): 328-337

[6]

Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of Riemannian manifold. J. Reine Angew. Math., 1971, 250: 124-129

[7]

Kowalski O, Sekizawa M. On curvatures of linear frame bundle with naturally lifted metrics. Rend. Sem. Mat. Univ. Pol. Torino, 2005, 63: 283-296

[8]

Kurek J. On a horizontal lift of a linear connection to the bundle of linear frames. Ann. Univ. Marie Curie-Skladowska. Sectio A, 1987, XLI: 31-37

[9]

Mok K P. Metrics and connections on the cotangent bundle. Kodai Math. Sem. Rep., 1977, 28: 226-238

[10]

Mok K P. On the differential geometry of frame bundles of Riemannian manifolds. J. Reine Angew. Math., 1978, 302: 16-31

[11]

Musso E, Tricerri F. Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl., 1988, 150: 1-20

[12]

Salimov A A, Cengiz N. Lifting of Riemannian metrics to tensor bundles. Russian Math. (Iz. Vuz.), 2003, 47(11): 47-55

[13]

Salimov A A, Agca F. Some properties of Sasakian metrics in cotangent bundles. Mediterr. J. Math., 2011, 8: 243-255

[14]

Salimov A A, Gezer A. On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chin. Ann. Math., 2011, 32: 1-18

[15]

Salimov A A, Gezer A, Akbulut K. Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math., 2009, 6(2): 137-149

[16]

Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J., 1958, 10: 338-354

[17]

Yano K, Ishihara S. Horizontal lifts of tensor fields and connections to tangent bundles. Math. and Mech., 1967, 16: 1015-1030

[18]

Yano K, Ishihara S. Tangent and Cotangent Bundles, 1973, New York: Marsel Dekker, Inc.

[19]

Yano K, Patterson E M. Horizontal lift from a manifold to its cotangent bundle. J. Math. Soc. Japan, 1967, 19: 185-198

AI Summary AI Mindmap
PDF

383

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/