Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation

Yaqun Peng , Xinli Zhang , Daxiong Piao

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 85 -104.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 85 -104. DOI: 10.1007/s11401-021-0246-9
Article

Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation

Author information +
History +
PDF

Abstract

The authors study the Lagrangian stability for the sublinear Duffing equations + e(t)∣x α−1 x = p(t) with 0 < α < 1, where e and p are real analytic quasi-periodic functions with frequency ω. It is proved that if the mean value of e is positive and the frequency ω satisfies Diophantine condition, then every solution of the equation is bounded.

Keywords

Hamiltonian system / Sublinear Duffing equation / Boundedness / Quasi-periodic solution / Invariant curve

Cite this article

Download citation ▾
Yaqun Peng,Xinli Zhang,Daxiong Piao. Boundedness of Solutions of a Quasi-periodic Sublinear Duffing Equation. Chinese Annals of Mathematics, Series B, 2021, 42(1): 85-104 DOI:10.1007/s11401-021-0246-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Morris G R. A case of boundedness in Littlewood’s problem on oscillatory differential equations. Bull. Aust. Math. Soc., 1976, 14(1): 71-93

[2]

Alonso J M, Ortega R. Unbounded solutions of semilinear equations at resonance. Nonlinearity, 1996, 9: 1099-1111

[3]

Dieckerhoff R, Zehnder E. Boundedness of solutions via the twist-theorem. Ann. Sc. Norm. Super. Pisa Cl. Sci., 1987, 14(1): 79-95

[4]

Liu B. Boundedness for solutions of nonlinear periodic differential equations via Moser’s twist theorem. Acta Mathematica Sinica, 1992, 8(1): 91-98

[5]

Ortega R. Boundedness in a piecewise linear oscillator and a variant of the small twist theorem. Proc. Lond. Math. Soc., 1999, 79: 381-413

[6]

You J. Boundedness for solutions of superlinear Duffing equations via the twist theorem. Sci. China Scientia Sinica., 1992, 35(4): 399-412

[7]

Küpper T, You J. Existence of quasi-periodic solutions and Littlewood’s boundedness problem of Duffing equations with subquadratic potentials. Nonlinear Anal. TMA, 1999, 35(5): 549-559

[8]

Liu B. On Littlewood’s boundedness problem for sublinear Duffing equations. Trans. Amer. Math. Soc., 2001, 353(4): 1567-1585

[9]

Wang Y. Boundedness for sublinear Duffing equations with time-dependent potentials. J. Differential Equations, 2009, 247(1): 104-118

[10]

Zharnitsky V. Invariant curve theorem for quasi-periodic twist mappings and stability of motion in the Fermi-Ulam problem. Nonlinearity, 2000, 13: 1123-1136

[11]

Levi M, Zehnder E. Boundedness of solutions for quasi-periodic potentials. SIAM J. Math. Anal., 1996, 26: 1233-1256

[12]

Liu B. Invariant curves of quasi-periodic reversible mappings. Nonlinearity, 2005, 18(2): 685-701

[13]

Huang P, Li X, Liu B. Quasi-periodic solutions for an asymmetric oscillation. Nonlinearity, 2017, 29(10): 3006-3030

[14]

Huang P, Li X, Liu B. Invariant curves of smooth quasi-periodic mappings. Discrete Contin. Dyn. Syst., 2018, 38(1): 131-154

[15]

Siegel C, Moser J. Lectures on Celestial Mechanics, 1997, Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/