Composition Cesàro Operator on the Normal Weight Zygmund Space in High Dimensions

Si Xu , Xuejun Zhang , Shenlian Li

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 69 -84.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 69 -84. DOI: 10.1007/s11401-021-0245-x
Article

Composition Cesàro Operator on the Normal Weight Zygmund Space in High Dimensions

Author information +
History +
PDF

Abstract

Let n > 1 and B be the unit ball in n dimensions complex space C n. Suppose that φ is a holomorphic self-map of B and ψH(B) with ψ(0) = 0. A kind of integral operator, composition Cesàro operator, is defined by ${T_{\varphi,\psi }}\left( f \right)\left( z \right) = \int_0^1 {f\left[ {\varphi \left( {tz} \right)} \right]R\psi \left( {tz} \right){{{\rm{d}}t} \over t}},\;\;\;\;f \in H\left( B \right),\;\;z \in B.$ In this paper, the authors characterize the conditions that the composition Cesàro operator T φ,ψ is bounded or compact on the normal weight Zygmund space ${{\cal Z}_\mu }\left( B \right)$. At the same time, the sufficient and necessary conditions for all cases are given.

Keywords

Normal weight Zygmund space / Composition Cesàro operator / Boundedness and compactness

Cite this article

Download citation ▾
Si Xu, Xuejun Zhang, Shenlian Li. Composition Cesàro Operator on the Normal Weight Zygmund Space in High Dimensions. Chinese Annals of Mathematics, Series B, 2021, 42(1): 69-84 DOI:10.1007/s11401-021-0245-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang X J, Li M, Guan Y. The equivalent norms and the Gleason’s problem on µ-Zygmund spaces in C n. J. Math. Anal. Appl., 2014, 419: 185-199

[2]

Stević, S., On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball, Abstr. Appl. Anal., 2010, Article ID 198608, 7 pages.

[3]

Li, S. X. and Stević, S., Volterra type operators on Zygmund space, J. Inequal. Appl., 2007, Article ID 32124, 10 pages.

[4]

Li S X, Stević S. Products of Volterra type operator and composition operator from H and Bloch spaces to the Zygmund space. J. Math. Anal. Appl., 2008, 345: 40-52

[5]

Li S X, Stević S. Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput., 2008, 206(2): 825-831

[6]

Li S X, Stević S. Integral-type operators from Bloch-type spaces to Zygmund-type spaces. Appl. Math. Comput., 2009, 215(2): 464-473

[7]

Li S X, Stević S. On an integral-type operator from ω-Bloch spaces to µ-Zygmund spaces. Appl. Math. Comput., 2010, 215(12): 4385-4391

[8]

Li S X, Stević S. Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl., 2008, 338: 1282-1295

[9]

Stević S. On an integral operator from the Zygmund space to the Bloch type space on the unit ball. Glasgow Math. J., 2009, 51: 275-287

[10]

Fang Z S, Zhou Z H. Extended Cesàro operators from generally weighted Bloch spaces to Zygmund space. J. Math. Anal. Appl., 2009, 359: 499-507

[11]

Zhu X. A new characterization of the generalized weighted composition operator from H into the Zygmund space. Math. Ineq. Appl., 2015, 18: 1135-1142

[12]

Li S X, Stević S. Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces. Appl. Math. Comput., 2010, 217: 3144-3154

[13]

Liu Y M, Yu Y Y. Weighted differentiation composition operators from mixed-norm to Zygmund spaces. Numer. Funct. Anal. Optim., 2010, 31: 936-954

[14]

Ye S L, Lin C S. Composition followed by differentiation on the Zygmund space. Acta Math. Sin., 2016, 59: 11-20 (in Chinese)

[15]

Ye, S. L. and Hu, Q. X., Weighted composition operators on the Zygmund space, Abstr. Appl. Anal., 2012, Artical ID 462482, 18 pages.

[16]

Dai J N. Composition operators on Zygmund spaces of the unit ball. J. Math. Anal. Appl., 2012, 394: 696-705

[17]

Zhang J F, Xu H M. Weighted Cesàro operators on Zygmund type spaces on the unit ball. Acta Math. Sci., 2011, 31A(1): 188-195 (in Chinese)

[18]

Liang Y X, Wang C J, Zhou Z H. Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball. Ann. Polo. Math., 2015, 114(2): 101-114

[19]

Zhang X J, Xu S. Weighted differentiation composition operators between normal weight Zygmund spaces and Bloch spaces in the unit ball of C n for n > 1. Complex Anal. Oper. Theory, 2019, 13(3): 859-878

[20]

Zhang X J, Li S L. The composition operator on the normal weight Zygmund space in high dimensions. Complex Var. and Ellip. Equ., 2019, 64(11): 1932-1953

[21]

Li, S. L. and Zhang, X. J., Composition operators on the normal weight Zygmund spaces in high dimensions, J. Math. Anal. Appl., 487(2), 2020, 19 pages.

[22]

Li S L, Zhang X J. Several properties on the normal weight Zygmund space in several complex variables. Acta Math. Sin., 2019, 62(5): 795-808 (in Chinese)

[23]

Guo Y T, Shang Q L, Zhang X J. The pointwise multiplier on the normal weight Zygmund space in the unit ball. Acta Math. Sci., 2018, 38A(6): 1041-1048 (in Chinese)

[24]

Zhao Y H, Zhang X J. On an integral-type operator from Dirichlet spaces to Zygmund type spaces on the unit ball. Acta Math. Sci., 2017, 37A(2): 217-227 (in Chinese)

[25]

Zhao Y H, Zhang X J. Integral-type operators on Zygmund type spaces on the unit ball. Math. Adv. (China), 2016, 45(5): 755-766 (in Chinese)

[26]

Long, J. R., Qiu, C. H. and Wu, P. C., Weighted composition followed and proceeded by differentiation operators from Zygmund spaces to Bloch-type spaces, J. of Ineq. and Appl., 2014, 152, 12 pages.

[27]

Dai J N, Ouyang C H. Composition operators from Zygmund spaces to α-Bloch spaces in the unit ball. J. of Wuhan Uni. (Natur. Sci. Ed.), 2010, 56(4): 961-968 (in Chinese)

[28]

Siskakis A G. Composition semigroups and the Cesàro operator on H p. J. London Math. Soc., 1987, 36(2): 153-164

[29]

Miao J. The Cesàro operator is bounded on H p for 0 < p < 1. Proc. Amer. Math. Soc., 1992, 116: 1077-1079

[30]

Shi J H, Ren G B. Boundedness of the Cesàro operator on mixed norm spaces. Proc. Amer. Math. Soc., 1998, 126: 3553-3560

[31]

Xiao J. Cesàro operators on Hardy, BMOA and Bloch spaces. Arch. Math., 1997, 68: 398-406

[32]

Xiao J, Tan H. p-Bergman spaces, α-Bloch spaces, little α-Bloch spaces and Cesàro means. Chin. Ann. Math., 1998, 19A(2): 187-196 (in Chinese)

[33]

Aleman A, Siskakis A G. An Integral operator on H p. Complex Variables, 1995, 28: 149-158

[34]

Hu Z J. Extended Cesàro operators on the Bloch space in the ball of C n. Acta Math. Sci., 2003, 23B(4): 561-566

[35]

Hu Z J. Extended Cesàro operators on mixed norm spaces. Proc. Amer. Math. Soc., 2003, 131(7): 2171-2179

[36]

Aleman A, Siskakis A G. Integration operators on Bergman spaces. Indiana Uni. Math. J., 1997, 46: 337-356

[37]

Zhang X J. Weighted Cesàro operators on Dirichlet type spaces and Bloch type spaces of C n. Chin. Ann. Math., 2005, 26A(1): 139-150 (in Chinese)

[38]

Stević S. On a new operator from H to the Bloch type spaces on the unit ball. Util. Math., 2008, 77: 257-263

[39]

Stević S, Ueki S. Integral-type operator acting between weighted-type spaces on the unit ball. Appl. Math. Comput., 2009, 215(7): 2464-2471

[40]

Stević S. On operator $P_\varphi ^g$ from the logarithmic Bloch-type spaces to the mixed-norm spaces on the unit ball. Appl. Math. Comput., 2010, 215(12): 4248-4255

[41]

Stević S. On some integral-type operator between a general space and Bloch type spaces. Appl. Math. Comput., 2011, 218(6): 2600-2618

[42]

Zhang X J, Chu Y M. Compact Cesàro operator from spaces H(p, q, u) to H(p, q, v). Acta Math. Appl. Sin. (English Series), 2006, 22(3): 437-442

[43]

Chen H H, Gauthier P H. Composition operators on µ-Bloch spaces. Canad. J. Math., 2009, 61: 50-75

[44]

Zhang X J, Li J X. Weighted composition operators between µ-Bloch spaces on the unit ball of C n. Acta Math. Sci., 2009, 29A: 573-583 (in Chinese)

[45]

Hu Z J. Composition operators between Bloch-type spaces in the polydisc. Sci. China, 2005, 48A: 268-282 (supp)

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/