Composition Cesàro Operator on the Normal Weight Zygmund Space in High Dimensions

Si Xu , Xuejun Zhang , Shenlian Li

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 69 -84.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 69 -84. DOI: 10.1007/s11401-021-0245-x
Article

Composition Cesàro Operator on the Normal Weight Zygmund Space in High Dimensions

Author information +
History +
PDF

Abstract

Let n > 1 and B be the unit ball in n dimensions complex space C n. Suppose that φ is a holomorphic self-map of B and ψH(B) with ψ(0) = 0. A kind of integral operator, composition Cesàro operator, is defined by ${T_{\varphi,\psi }}\left( f \right)\left( z \right) = \int_0^1 {f\left[ {\varphi \left( {tz} \right)} \right]R\psi \left( {tz} \right){{{\rm{d}}t} \over t}},\;\;\;\;f \in H\left( B \right),\;\;z \in B.$ In this paper, the authors characterize the conditions that the composition Cesàro operator T φ,ψ is bounded or compact on the normal weight Zygmund space ${{\cal Z}_\mu }\left( B \right)$. At the same time, the sufficient and necessary conditions for all cases are given.

Keywords

Normal weight Zygmund space / Composition Cesàro operator / Boundedness and compactness

Cite this article

Download citation ▾
Si Xu,Xuejun Zhang,Shenlian Li. Composition Cesàro Operator on the Normal Weight Zygmund Space in High Dimensions. Chinese Annals of Mathematics, Series B, 2021, 42(1): 69-84 DOI:10.1007/s11401-021-0245-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/