Rotational Forms of Large Eddy Simulation Turbulence Models: Modeling and Mathematical Theory

Luigi C. Berselli , Roger Lewandowski , Dinh Duong Nguyen

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 17 -40.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 17 -40. DOI: 10.1007/s11401-021-0243-z
Article

Rotational Forms of Large Eddy Simulation Turbulence Models: Modeling and Mathematical Theory

Author information +
History +
PDF

Abstract

In this paper the authors present a derivation of a back-scatter rotational Large Eddy Simulation model, which is the extension of the Baldwin & Lomax model to non-equilibrium problems. The model is particularly designed to mathematically describe a fluid filling a domain with solid walls and consequently the differential operators appearing in the smoothing terms are degenerate at the boundary. After the derivation of the model, the authors prove some of the mathematical properties coming from the weighted energy estimates, which allow to prove existence and uniqueness of a class of regular weak solutions.

Keywords

Fluid mechanics / Turbulence models / Rotational Large Eddy Simulation models / Navier-Stokes equations

Cite this article

Download citation ▾
Luigi C. Berselli, Roger Lewandowski, Dinh Duong Nguyen. Rotational Forms of Large Eddy Simulation Turbulence Models: Modeling and Mathematical Theory. Chinese Annals of Mathematics, Series B, 2021, 42(1): 17-40 DOI:10.1007/s11401-021-0243-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amrouche C, Berselli L C, Lewandowski R, Nguyen D D. Turbulent flows as generalized Kelvin-Voigt materials: Modeling and analysis. Nonlinear Anal., 2020, 196: 111790

[2]

Baldwin, B. and Lomax, H., Thin-layer approximation and algebraic model for separated turbulent flows, AIAA paper 78–257, January 1978. 16th AIAA aerospace sciences meeting, Huntsville, AL. U.S.A. https://doi.org/10.2514/6.1978-257

[3]

Berselli, L. C. and Breit, D., On the existence of weak solutions for the steady Baldwin-Lomax model and generalizations, J. Math. Anal. Appl., 2020, 124633. https://doi.org/10.1016/j.jmaa.2020.124633

[4]

Berselli L C, Iliescu T, Layton W J. Mathematics of Large Eddy Simulation of Turbulent Flows, 2006, Berlin: Scientific Computation, Springer-Verlag

[5]

Bourguignon J P, Brezis H. Remarks on the Euler equation. J. Functional Analysis, 1974, 15: 341-363

[6]

Cao Y, Lunasin E M, Titi E S. Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci., 2006, 4(4): 823-848

[7]

Chacón Rebollo T, Lewandowski R. Mathematical and Numerical Foundations of Turbulence Models and Applications, Modeling and Simulation in Science, 2014, New York: Engineering and Technology, Birkhäuser/Springer

[8]

Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2011, New York: Springer-Verlag

[9]

Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 2001, Berlin: Springer-Verlag

[10]

Kufner A. Weighted Sobolev Spaces, 1985, New York: A Wiley-Interscience Publication, John Wiley & Sons, Inc.

[11]

Ladyžhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow, 1969 Second English edition New York: Gordon and Breach Science Publishers

[12]

Landes R, Mustonen V. A strongly nonlinear parabolic initial-boundary value problem. Ark. Mat., 1987, 25(1): 29-40

[13]

Leray J. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 1934, 63(1): 193-248

[14]

Lions J-L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, 1969, Paris: Dunod, Gauthier-Villars

[15]

Málek J, Nečas J, Rokyta M, Ružička M. Weak and Measure-Valued Solutions to Evolutionary PDEs, 1996, London: Chapman & Hall

[16]

Obuhov A M. Turbulence in an atmosphere with inhomogeneous temperature. Akad. Nauk SSSR. Trudy Inst. Teoret. Geofiz., 1946, 1: 95-115

[17]

Prandtl L. Prandtl—Essentials of Fluid Mechanics, 2010 3rd ed. New York: Springer-Verlag

[18]

Rong Y, Layton W J, Zhao H. Extension of a simplified Baldwin-Lomax Model to nonequilibrium turbulence: Model, analysis and algorithms. Numer. Methods Partial Differential Equations, 2019, 35(5): 1821-1846

[19]

Smagorinsky J. On the application of numerical methods to the solution of systems of partial differential equations arising in meteorology. Frontiers of Numerical Mathematics, 1960, Madison, Wis.: University of Wisconsin Press 107-125

[20]

Stein E. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton, NJ: Princeton University Press

[21]

van Driest E R. On turbulent flow near a wall. J. Aerospace Sci., 1956, 23: 1007-1011

[22]

von Wahl W. Estimating ∇u by div u and curl u. Math. Methods Appl. Sci., 1992, 15(2): 123-143

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/