PDF
Abstract
In this paper the authors derive regular criteria in Lorentz spaces for Leray-Hopf weak solutions υ of the three-dimensional Navier-Stokes equations based on the formal equivalence relation π ≅ ∣υ∣2, where π denotes the fluid pressure and υ denotes the fluid velocity. It is called the mixed pressure-velocity problem (the P-V problem for short). It is shown that if ${\pi \over {{{({e^{ - {{\left| x \right|}^2}}} + \left| v \right|)}^\theta }}} \in {L^p}\left( {0,T;{L^{q,\infty }}} \right)$, where 0 ≤ θ ≤ 1 and ${2 \over p} + {3 \over q} = 2 - \theta $, then {itυ} is regular on (0, {itT}]. Note that, if Ω is periodic, ${{e^{ - {{\left| x \right|}^2}}}}$ may be replaced by a positive constant. This result improves a 2018 statement obtained by one of the authors. Furthermore, as an integral part of the contribution, the authors give an overview on the known results on the P-V problem, and also on two main techniques used by many authors to establish sufficient conditions for regularity of the so-called Ladyzhenskaya-Prodi-Serrin (L-P-S for short) type.
Keywords
Navier-Stokes equations
/
Pressure ≌ square velocity
/
Regularity criteria
/
Lorentz spaces
Cite this article
Download citation ▾
Hugo Beirão da Veiga, Jiaqi Yang.
On Mixed Pressure-Velocity Regularity Criteria to the Navier-Stokes Equations in Lorentz Spaces.
Chinese Annals of Mathematics, Series B, 2021, 42(1): 1-16 DOI:10.1007/s11401-021-0242-0
| [1] |
Beirão da Veiga H. Existence and Asymptotic Behaviour for Strong Solutions of the Navier-Stokes Equations in the Whole Space, 1985, Minneapolis: Institute for Mathematics and its Applications, University of Minnesota
|
| [2] |
Beirão da Veiga H. Existence and asymptotic behaviour for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J., 1987, 36: 149-166
|
| [3] |
Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in R n. Chin. Ann. Math. Ser. B, 1995, 16: 407-412
|
| [4] |
Beirão da Veiga H. Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method, Part I. Diff. Int. Eq., 1997, 10: 1149-1156
|
| [5] |
Beirão da Veiga H. Remarks on the smoothness of the L ∞(0, T; L 3) solutions of the 3-D Navier-Stokes equations. Portugaliae Math., 1997, 54: 381-391
|
| [6] |
Beirão da Veiga H. Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method, Part II. Équations aux Dérivées Partielles et Applications, 1998, Paris: Gauthier-Villars 127-138
|
| [7] |
Beirão da Veiga H. A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech., 2000, 2: 99-106
|
| [8] |
Beirão da Veiga H. On the truth, and limits, of a full equivalence p ≅ υ 2 in the regularity theory of the Navier-Stokes equations: A point of view. J. Math. Fluid Mech., 2018, 20: 889-898
|
| [9] |
Bergh J, Löfström J. Interpolation Spaces, 1976, Berlin: Springer-Verlag
|
| [10] |
Berselli L C. Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations. Math. Meth. Appl. Sci., 1999, 22: 1079-1085
|
| [11] |
Berselli L C, Galdi G P. Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations. Proc. Amer. Math. Soc., 2002, 130: 3585-3595
|
| [12] |
Berselli L C, Manfrin R. On a theorem of Sohr for the Navier-Stokes equations. J. Evol. Eq., 2004, 4: 193-211
|
| [13] |
Bjorland C, Vasseur A F. Weak in space, Log in time improvement of the Ladyženskaja-Prodi-Serrin criteria. J. Math. Fluid Mech., 2011, 13: 259-269
|
| [14] |
Carrillo J A, Ferreira L C F. Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math., 2007, 151: 111-142
|
| [15] |
Escauriaza L, Seregin G, Šverák V. L 3, ∞ solutions to the Navier-Stokes equations and backward uniqueness. Russian Math. Surveys, 2003, 58: 211-250
|
| [16] |
De Giorgi E. Sulla differenziabilità e l’analicità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino, cl. Sci. Fis. Mat. Nat. (3), 1957, 3: 25-43
|
| [17] |
Galdi G P. An introduction to the Navier-Stokes initial-boundary value problem. Fundamental Directions in Mathematical Fluid-Mechanics, 2000, Basel: Birkhauser 1-70
|
| [18] |
Galdi G P, Maremonti P. Sulla regolarità delle soluzioni deboli al sistema di Navier-Stokes in domini arbitrari. Ann. Univ. Ferrara., 1988, 34: 59-73
|
| [19] |
Giga Y. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Diff. Eq., 1986, 61: 186-212
|
| [20] |
Grafakos L. Classical Fourier Analysis, 2008 2nd ed. Berlin: Springer-Verlag
|
| [21] |
Ji X, Wang Y, Wei W. New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J. Math. Fluid Mech., 2020, 22: 1-8
|
| [22] |
Kaniel S. A sufficient condition for smoothness of solutions of Navier-Stokes equations. Israel J. Math., 1969, 6: 354-358
|
| [23] |
Ladyžhenskaya O A. Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 1967, 5: 169-185
|
| [24] |
Ladyžhenskaya O A, Ural’ceva N N, Solonnikov V A. Linear and Quasilinear Equations of Parabolic Type, 1968, Providence, RI.: Amer. Math. Soc. translated from Russian)
|
| [25] |
Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem, 2002, Boca Raton, FL: Chapman & Hall/CRC
|
| [26] |
Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl., 1959, 48: 173-182
|
| [27] |
Rionero S, Galdi G P. The weight function approach to uniquiness of viscous flows in unbounded domains. Arch. Rat. Mech. Anal., 1979, 69: 37-52
|
| [28] |
Seregin G. On smoothness of L 3,∞- solutions to the Navier-Stokes equations up to the boundary. Math. Ann., 2005, 332: 219-238
|
| [29] |
Seregin G, Šverák V. Navier-Stokes equations with lower bounds on the pressure. Arch. Rat. Mech. Anal., 2002, 163: 65-86
|
| [30] |
Serrin, J., The initial value problem for the Navier-Stokes equations, Nonlinear Problems, R. E. Langer (ed.), Univ. Wisconsin Press, Madison, Wisconsin, 1963, 69–98.
|
| [31] |
Sohr H. Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z., 1983, 184: 359-375
|
| [32] |
Sohr H. A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ., 2001, 1: 441-467
|
| [33] |
Stampacchia G. Le problème de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinus. Ann. Inst. Fourier Grenoble, 1965, 15: 189-258
|
| [34] |
Suzuki T. Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations. J. Math. Fluid Mech., 2012, 14: 653-660
|
| [35] |
Suzuki T. A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces. Nonlinear Anal. Theory Methods Appl., 2012, 75: 3849-3853
|
| [36] |
Tartar L. Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. dell’Unione Mat. Ital., 1998, 1: 479-500
|
| [37] |
Vasseur A F. A new proof of partial regularity of solutions to Navier-Stokes equations. NoDEA., 2007, 14: 753-785
|
| [38] |
Zhou Y. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations. Math. Ann., 2004, 328: 173-192
|