On Mixed Pressure-Velocity Regularity Criteria to the Navier-Stokes Equations in Lorentz Spaces

Hugo Beirão da Veiga , Jiaqi Yang

Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 1 -16.

PDF
Chinese Annals of Mathematics, Series B ›› 2021, Vol. 42 ›› Issue (1) : 1 -16. DOI: 10.1007/s11401-021-0242-0
Article

On Mixed Pressure-Velocity Regularity Criteria to the Navier-Stokes Equations in Lorentz Spaces

Author information +
History +
PDF

Abstract

In this paper the authors derive regular criteria in Lorentz spaces for Leray-Hopf weak solutions υ of the three-dimensional Navier-Stokes equations based on the formal equivalence relation π ≅ ∣υ2, where π denotes the fluid pressure and υ denotes the fluid velocity. It is called the mixed pressure-velocity problem (the P-V problem for short). It is shown that if ${\pi \over {{{({e^{ - {{\left| x \right|}^2}}} + \left| v \right|)}^\theta }}} \in {L^p}\left( {0,T;{L^{q,\infty }}} \right)$, where 0 ≤ θ ≤ 1 and ${2 \over p} + {3 \over q} = 2 - \theta $, then {itυ} is regular on (0, {itT}]. Note that, if Ω is periodic, ${{e^{ - {{\left| x \right|}^2}}}}$ may be replaced by a positive constant. This result improves a 2018 statement obtained by one of the authors. Furthermore, as an integral part of the contribution, the authors give an overview on the known results on the P-V problem, and also on two main techniques used by many authors to establish sufficient conditions for regularity of the so-called Ladyzhenskaya-Prodi-Serrin (L-P-S for short) type.

Keywords

Navier-Stokes equations / Pressure ≌ square velocity / Regularity criteria / Lorentz spaces

Cite this article

Download citation ▾
Hugo Beirão da Veiga, Jiaqi Yang. On Mixed Pressure-Velocity Regularity Criteria to the Navier-Stokes Equations in Lorentz Spaces. Chinese Annals of Mathematics, Series B, 2021, 42(1): 1-16 DOI:10.1007/s11401-021-0242-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beirão da Veiga H. Existence and Asymptotic Behaviour for Strong Solutions of the Navier-Stokes Equations in the Whole Space, 1985, Minneapolis: Institute for Mathematics and its Applications, University of Minnesota

[2]

Beirão da Veiga H. Existence and asymptotic behaviour for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J., 1987, 36: 149-166

[3]

Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in R n. Chin. Ann. Math. Ser. B, 1995, 16: 407-412

[4]

Beirão da Veiga H. Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method, Part I. Diff. Int. Eq., 1997, 10: 1149-1156

[5]

Beirão da Veiga H. Remarks on the smoothness of the L (0, T; L 3) solutions of the 3-D Navier-Stokes equations. Portugaliae Math., 1997, 54: 381-391

[6]

Beirão da Veiga H. Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method, Part II. Équations aux Dérivées Partielles et Applications, 1998, Paris: Gauthier-Villars 127-138

[7]

Beirão da Veiga H. A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech., 2000, 2: 99-106

[8]

Beirão da Veiga H. On the truth, and limits, of a full equivalence pυ 2 in the regularity theory of the Navier-Stokes equations: A point of view. J. Math. Fluid Mech., 2018, 20: 889-898

[9]

Bergh J, Löfström J. Interpolation Spaces, 1976, Berlin: Springer-Verlag

[10]

Berselli L C. Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations. Math. Meth. Appl. Sci., 1999, 22: 1079-1085

[11]

Berselli L C, Galdi G P. Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations. Proc. Amer. Math. Soc., 2002, 130: 3585-3595

[12]

Berselli L C, Manfrin R. On a theorem of Sohr for the Navier-Stokes equations. J. Evol. Eq., 2004, 4: 193-211

[13]

Bjorland C, Vasseur A F. Weak in space, Log in time improvement of the Ladyženskaja-Prodi-Serrin criteria. J. Math. Fluid Mech., 2011, 13: 259-269

[14]

Carrillo J A, Ferreira L C F. Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh. Math., 2007, 151: 111-142

[15]

Escauriaza L, Seregin G, Šverák V. L 3, ∞ solutions to the Navier-Stokes equations and backward uniqueness. Russian Math. Surveys, 2003, 58: 211-250

[16]

De Giorgi E. Sulla differenziabilità e l’analicità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino, cl. Sci. Fis. Mat. Nat. (3), 1957, 3: 25-43

[17]

Galdi G P. An introduction to the Navier-Stokes initial-boundary value problem. Fundamental Directions in Mathematical Fluid-Mechanics, 2000, Basel: Birkhauser 1-70

[18]

Galdi G P, Maremonti P. Sulla regolarità delle soluzioni deboli al sistema di Navier-Stokes in domini arbitrari. Ann. Univ. Ferrara., 1988, 34: 59-73

[19]

Giga Y. Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Diff. Eq., 1986, 61: 186-212

[20]

Grafakos L. Classical Fourier Analysis, 2008 2nd ed. Berlin: Springer-Verlag

[21]

Ji X, Wang Y, Wei W. New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J. Math. Fluid Mech., 2020, 22: 1-8

[22]

Kaniel S. A sufficient condition for smoothness of solutions of Navier-Stokes equations. Israel J. Math., 1969, 6: 354-358

[23]

Ladyžhenskaya O A. Uniqueness and smoothness of generalized solutions of Navier-Stokes equations. Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 1967, 5: 169-185

[24]

Ladyžhenskaya O A, Ural’ceva N N, Solonnikov V A. Linear and Quasilinear Equations of Parabolic Type, 1968, Providence, RI.: Amer. Math. Soc. translated from Russian)

[25]

Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem, 2002, Boca Raton, FL: Chapman & Hall/CRC

[26]

Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl., 1959, 48: 173-182

[27]

Rionero S, Galdi G P. The weight function approach to uniquiness of viscous flows in unbounded domains. Arch. Rat. Mech. Anal., 1979, 69: 37-52

[28]

Seregin G. On smoothness of L 3,∞- solutions to the Navier-Stokes equations up to the boundary. Math. Ann., 2005, 332: 219-238

[29]

Seregin G, Šverák V. Navier-Stokes equations with lower bounds on the pressure. Arch. Rat. Mech. Anal., 2002, 163: 65-86

[30]

Serrin, J., The initial value problem for the Navier-Stokes equations, Nonlinear Problems, R. E. Langer (ed.), Univ. Wisconsin Press, Madison, Wisconsin, 1963, 69–98.

[31]

Sohr H. Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math. Z., 1983, 184: 359-375

[32]

Sohr H. A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ., 2001, 1: 441-467

[33]

Stampacchia G. Le problème de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinus. Ann. Inst. Fourier Grenoble, 1965, 15: 189-258

[34]

Suzuki T. Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations. J. Math. Fluid Mech., 2012, 14: 653-660

[35]

Suzuki T. A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces. Nonlinear Anal. Theory Methods Appl., 2012, 75: 3849-3853

[36]

Tartar L. Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. dell’Unione Mat. Ital., 1998, 1: 479-500

[37]

Vasseur A F. A new proof of partial regularity of solutions to Navier-Stokes equations. NoDEA., 2007, 14: 753-785

[38]

Zhou Y. Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations. Math. Ann., 2004, 328: 173-192

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/