Reflected Quadratic BSDEs Driven by G-Brownian Motions
Dong Cao , Shanjian Tang
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (6) : 873 -928.
Reflected Quadratic BSDEs Driven by G-Brownian Motions
In this paper, the authors consider a reflected backward stochastic differential equation driven by a G-Brownian motion (G-BSDE for short), with the generator growing quadratically in the second unknown. The authors obtain the existence by the penalty method, and some a priori estimates which imply the uniqueness, for solutions of the G-BSDE. Moreover, focusing their discussion at the Markovian setting, the authors give a nonlinear Feynman-Kac formula for solutions of a fully nonlinear partial differential equation.
G-Brownian motion / G-Martingale / Quandratic growth / G-BSDEs / Probabilistic representation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
El Karoui, N., Kapoudjian, C., Pardoux, E., et al., Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s, The Annals of Probability, 25(2), 702–737. |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Krylov, N. V., Nonlinear Elliptic and Parabolic Equations of the Second Order, Translated from the Russian by P. L. Buzytsky [P. L. Buzytskiĭ]. Mathematics and its Applications (Soviet Series), 7. D. Reidel Publishing Co., Dordrecht, 1987. |
| [21] |
Lepeltier, J. P. and Xu, M., Reflected BSDE with quadratic growth and unbounded terminal value. arXiv: 0711.0619, 2007 |
| [22] |
Li, H. and Peng, S., Reflected BSDE driven by G-Brownian motion with an upper obstacle. arXiv: 1709.09817, 2017 |
| [23] |
Li, H., Peng, S. and Song, Y., Supermartingale decomposition theorem under G-expectation, Electronic Journal of Probability, 23, 2018, Paper No. 50, 20 pages. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Matoussi, A., Possamaï, D. and Zhou, C., Corrigendum for “Second-order reflected backward stochastic differential equations” and “Second-order BSDEs with general reflection and game options under uncertainty”. arXiv: 1706.08588v2, 2017 |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
/
| 〈 |
|
〉 |