On the Decomposition Theorems for C*-Algebras

Chunlan Jiang , Liangqing Li , Kun Wang

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (6) : 829 -860.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (6) : 829 -860. DOI: 10.1007/s11401-020-0236-3
Article

On the Decomposition Theorems for C*-Algebras

Author information +
History +
PDF

Abstract

Elliott dimension drop interval algebra is an important class among all C*-algebras in the classification theory. Especially, they are building stones of $\mathcal{A}\mathcal{H}\mathcal{D}$ algebra and the latter contains all AH algebras with the ideal property of no dimension growth. In this paper, the authors will show two decomposition theorems related to the Elliott dimension drop interval algebra. Their results are key steps in classifying all AH algebras with the ideal property of no dimension growth.

Keywords

C*-algebra / Elliott dimension drop interval algebra / Decomposition theorem / Spectral distribution property

Cite this article

Download citation ▾
Chunlan Jiang, Liangqing Li, Kun Wang. On the Decomposition Theorems for C*-Algebras. Chinese Annals of Mathematics, Series B, 2020, 41(6): 829-860 DOI:10.1007/s11401-020-0236-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dadarlat M. Reduction to dimension three of local spectra of real rank zero C*-algebras. J. Reine Angew. Math., 1995, 460: 189-212

[2]

Dadarlat M, Gong G. A classification result for approximately homogeneous C*-algebras of real rank zero. Geometric and Functional Analysis, 1997, 7: 646-711

[3]

Eilers S. A complete invariant for AD algebras with bounded torsion in K 1. J. Funct. Anal., 1996, 139: 325-348

[4]

Elliott G A. On the classification of C*-algebras of real rank zero. J. Reine Angew. Math., 1993, 443: 263-290

[5]

Elliott G A. A classification of certain simple C*-algebras, 1993, Kluwer, Dordrecht: Quantum and Non-Commutative Analysis 373-388

[6]

Elliott G A. A classification of certain simple C*-algebras, II. J. Ramaunjan Math. Soc., 1997, 12: 97-134

[7]

Elliott G A, Gong G. On the inductive limits of matrix algebras over two-tori. American. J. Math., 1996, 118: 263-290

[8]

Elliott G A, Gong G. On the classification of C*-algebras of real rank zero, II. Ann. of Math., 1996, 144: 497-610

[9]

Elliott G A, Gong G, Jiang X, Su H. A classification of simple limits of dimension drop C*-algebras. Fields Inst. Commun., 1997, 13: 125-143

[10]

Elliott G A, Gong G, Li L. Injectivity of the connecting maps in AH inductive limit systems. Canand. Math. Bull., 2004, 26: 4-10

[11]

Elliott G A, Gong G, Li L. On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem. Invent. Math., 2007, 168(2): 249-320

[12]

Elliott G A, Gong G, Lin H, Pasnicu C. Abelian C*-subslgebras of C*-algebras of real rank zero and inductive limit C *-algebras. Duke Math. J., 1996, 83: 511-554

[13]

Elliott G A, Gong G, Su H. On the classification of C*-algebras of real rank zero, IV: Reduction to local spectrum of dimension two. Fields Inst. Commun., 1998, 20: 73-95

[14]

Gong G. Approximation by dimension drop C*-algebras and classification. C. R. Math. Rep. Acad. Sci Can., 1994, 16: 40-44

[15]

Gong G. On inductive limit of matrix algebras over higher dimension spaces, Part I. Math Scand., 1997, 80: 45-60

[16]

Gong G. On inductive limit of matrix algebras over higher dimension spaces, Part II. Math Scand., 1997, 80: 61-100

[17]

Gong G. Classification of C*-algebras of real rank zero and unsuspended E-equivalent types. J. Funct. Anal., 1998, 152: 281-329

[18]

Gong G. On the classification of simple inductive limit C*-algebras, I: Reduction theorems. Doc. Math., 2002, 7: 255-461

[19]

Gong, G., Jiang, C. and Li, L., A classification of inductive limit C*-algebras with ideal property, Hebei Normal University, Preprint.

[20]

Gong G, Jiang C, Li L, Pasnicu C. AT structure of AH algebras with ideal property and torsion free K-theory. J. Func. Anal., 2010, 58: 2119-2143

[21]

Gong G, Jiang C, Li L, Pasnicu C. A reduction theorem for AH algebras with the ideal property. Int. Math. Res. Not. IMRN, 2018, 24: 7606-7641

[22]

Gong Guihua, Jiang Chunlan and Wang Kun, A survey on classification of C*-algebras with the ideal property, accepted by Proceeding of IWOTA 2018, Birkhauser.

[23]

Ji K, Jiang C. A complete classification of AI algebra with ideal property. Canadian. J. Math., 2011, 63(2): 381-412

[24]

Jiang C. A classification of non-simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras. J. Topol. Anal., 2011, 3(3): 385-404

[25]

Jiang C. Reduction to dimension two of local spectrum for AH algebras with ideal property. Canad. Math. Bull., 2017, 60(4): 791-806

[26]

Jiang C, Wang K. A complete classification of limits of splitting interval algebras with the ideal property. J. Ramanujan Math. Soc., 2012, 27(3): 305-354

[27]

Li L. On the classification of simple C*-algebras: Inductive limit of matrix algebras over trees. Mem. Amer. Math. Soc., 1997, 127(605): 1-123

[28]

Li L. Simple inductive limit C *-algebras: Spectra and approximation by interval algebras. J. Reine Angew Math., 1999, 507: 57-79

[29]

Li L. Classification of simple C*-algebras: Inductive limit of matrix algebras over 1-dimensional spaces. J. Func. Anal., 2002, 192: 1-51

[30]

Li L. Reduction to dimension two of local spectrum for simple AH algebras. J. of Ramanujian Math. Soc., 2006, 21(4): 365-390

[31]

Lin H. Simple nuclear C *-algrbras of tracial topological rank one. J. Funct. Anal., 2007, 251(2): 601-679

[32]

Nielsen K E, Thomsen K. Limits of circle algebras. Expo. Math., 1996, 14: 17-56

[33]

Pasnicu C. Extension of AH algebras with the ideal property. Proc. Edinb. Math. Soc., 1999, 42(1): 65-76 2)

[34]

Pasnicu C. On the AH algebras with the ideal property. J. Operator Theory, 2000, 43(2): 389-407

[35]

Pasnicn C. Shape equiralence, nonstable K-theory and AH algebras. Pacific J. Math., 2000, 192: 159-182

[36]

Pasnicu C. Ideals generated by projections and inductive limit C*-algebras. Rocky Mountain J. Math., 2001, 31(3): 1083-1095

[37]

Pasnicu C. The ideal property in crossed products. Proc. Amer. Math. Soc., 2003, 131(7): 2103-2108

[38]

Su, H., On the classification of C*-algebras of real rank zero: Inductive limits of matrix algebras over non-Hausdorff graphs, Memoirs of the American Mathematical Society, 114(547), 1995, viii+83pp.

[39]

Thomsen, K., Inductive limit of interval algebras: The simple case, Quantum and Non-commutative Analysis, Arak, H. et al. (eds.), Kluwer, Dordrecht, 1993, 399–404.

[40]

Thomsen, K., Limits of certain subhomogeneous C *-algebras, Mem. Soc. Math. Fr. (N.S.), 71, 1999, vi+125pp.

[41]

Wang K. On invariants of C *-algebras with the ideal property. Journal of Noncommutative Geometry, 2018, 12(3): 1199-1225

[42]

Wang K., Classification of AH algebras with finitely many ideals, preprint.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/