Existence and Uniqueness of Viscosity Solutions for Nonlinear Variational Inequalities Associated with Mixed Control

Shipei Hu

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 793 -820.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 793 -820. DOI: 10.1007/s11401-020-0234-5
Article

Existence and Uniqueness of Viscosity Solutions for Nonlinear Variational Inequalities Associated with Mixed Control

Author information +
History +
PDF

Abstract

The author investigates the nonlinear parabolic variational inequality derived from the mixed stochastic control problem on finite horizon. Supposing that some sufficiently smooth conditions hold, by the dynamic programming principle, the author builds the Hamilton-Jacobi-Bellman (HJB for short) variational inequality for the value function. The author also proves that the value function is the unique viscosity solution of the HJB variational inequality and gives an application to the quasi-variational inequality.

Keywords

Optimal stopping / Mixed control / Variational inequality / Viscosity solution

Cite this article

Download citation ▾
Shipei Hu. Existence and Uniqueness of Viscosity Solutions for Nonlinear Variational Inequalities Associated with Mixed Control. Chinese Annals of Mathematics, Series B, 2020, 41(5): 793-820 DOI:10.1007/s11401-020-0234-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bardi M, Capuzzo-Dolcetta I. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, 1997, Boston, MA: Birkhäuser

[2]

Bensoussan A. Stochastic Control by Functional Analysis Methods, 1982, Amsterdam, New York: North-Holland Publishing Co.

[3]

Bensoussan A, Lions J L. Applications of Variational Inequalities in Stochastic Control, 1982, Amsterdam, New York: North-Holland Publishing Co.

[4]

Chang M H, Pang T, Yong J M. Optimal stopping problem for stochastic differntial equations with random coefficients. SIAM J. Control OPtim., 2009, 48(2): 941-971

[5]

Crandall M G, Ishii H, Lions P L. User’s guide to the viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 1992, 27(1): 1-67

[6]

Crandall M G, Lions P L. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 1983, 277(1): 1-42

[7]

El Karoui N. Les Aspects Probabilistes du Contrôle Stochastique, 1981, Berlin: Springer-Verlag

[8]

Fleming W H, Soner H M. Controlled Markov Processes and Viscosity Solutions, 1993, New York: Springer-Verlag

[9]

Friedman A. Optimal stopping problems in stochastic control. SIAM Rev., 1979, 21(1): 71-80

[10]

Friedman A. Variational Principle and Free-Boundary Problems, 1982, New York: Wiley

[11]

Friedman A. Optimal control for variational inequalities. SIAM J. Control Optim., 1986, 24(3): 439-451

[12]

Friedman A. Optimal control for parabolic variational inequalities. SIAM J. Control Optim., 1987, 25(2): 482-497

[13]

Friedman A, Huang S, Yong J. Bang-bang optimal control for the dam problem. Appl. Math. Optim., 1987, 15(1): 65-85

[14]

Friedman A, Huang S, Yong J. Optimal periodic control for the two-phase stefan problem. SIAM J. Control Optim., 1988, 26(1): 23-41

[15]

Goreac D, Serea O. Mayer and optimal stopping stochastic control problems with discontinuous cost. J. Math. Anal. and Appl., 2011, 380(1): 327-342

[16]

Karatzas I, Shreve S E. Brownian Motion and Stochastic Calculus, 1991 2nd ed. Berlin, New York: Springer-Verlag

[17]

Karatzas I, Shreve S E. Methods of Mathematical Finance, 1998, New York: Springer-Verlag

[18]

Karatzas I, Zamfirescu I. Martingale approach to stochastic control with discretionary stopping. Appl. Math. Optim., 2006, 53(2): 163-184

[19]

Karatzas I, Zamfirescu I. Martingale approach to stochastic differntial games of control and stopping. The Annals of Probability, 2008, 36(4): 1495-1527

[20]

Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Application, 1980, New York: Academic Press

[21]

Koike S, Morimoto H. Varitional inequalities for leavable bouned-velocity control. Appl. Math. Optim., 2003, 48(1): 1-20

[22]

Koike S, Morimoto H, Sakguchi S. A linear-quadratic control problem with discretionary stopping. Discrte Contin. Dyn. Syst. Ser. B, 2007, 8(2): 261-277

[23]

Krylov N V. Controlled Diffusion Processes, 1980, New York: Springer-Verlag

[24]

Morimoto H. Variational inequalities for combined control and stopping. SIAM J. Control Optim., 2003, 42(2): 686-708

[25]

Øksendal B. Stochastic Differential Equations, 1998 5th ed. Berlin: Springer-Verlag

[26]

Pham H. Optimal stopping of controlled jump diffusion processes: A viscosity solution approach. J. Math. Systems, Estimates and Control, 1998, 8(1): 1-27

[27]

Shrayev A N. Optimal Stopping Rules, 1978, Berlin: Springer-Verlag

[28]

Yong J M, Zhou X Y. Stochastic Controls: Hamiltonian Systems and HJB Equations, 1999, New York: SpringerVerlag

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/